Keresési lehetőségek
Kezdőlap Média Kisokos Kutatás és publikációk Statisztika Monetáris politika Az €uro Fizetésforgalom és piacok Karrier
Javaslatok
Rendezési szempont
Magyar nyelven nem elérhető

Kristina Bluwstein

22 November 2021
WORKING PAPER SERIES - No. 2614
Details
Abstract
We develop early warning models for financial crisis prediction by applying machine learning techniques to macrofinancial data for 17 countries over 1870–2016. Most nonlin-ear machine learning models outperform logistic regression in out-of-sample predictions and forecasting. We identify economic drivers of our machine learning models using a novel framework based on Shapley values, uncovering nonlinear relationships between the predic-tors and crisis risk. Throughout, the most important predictors are credit growth and the slope of the yield curve, both domestically and globally. A flat or inverted yield curve is of most concern when nominal interest rates are low and credit growth is high.
JEL Code
C40 : Mathematical and Quantitative Methods→Econometric and Statistical Methods: Special Topics→General
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods
E44 : Macroeconomics and Monetary Economics→Money and Interest Rates→Financial Markets and the Macroeconomy
F30 : International Economics→International Finance→General
G01 : Financial Economics→General→Financial Crises

Honlapunkon sütiket (cookies) használunk

Funkcionális sütiket használunk a felhasználói preferenciák tárolására, analitikai sütiket a honlap teljesítményének javítására, valamint alkalmazunk még külső szolgáltatók által a honlapba integrált sütiket.

Felhasználóink döntenek, hogy elfogadják vagy elutasítják őket. Bővebb tájékoztatásért, a sütikkel kapcsolatos preferenciák és szervernaplók áttekintéséért látogasson el az alábbi oldalakra:

Adatvédelmi nyilatkozatunk megtekintése

Sütihasználattal kapcsolatos szabályaink