Възможности за търсене
Начална страница Медии ЕЦБ обяснява Изследвания и публикации Статистика Парична политика Еврото Плащания и пазари Кариери
Предложения
Сортиране по
Съдържанието не е налично на български език.

Ingrid Daubechies

30 September 2008
WORKING PAPER SERIES - No. 936
Details
Abstract
We consider the problem of portfolio selection within the classical Markowitz meanvariance optimizing framework, which has served as the basis for modern portfolio theory for more than 50 years. Efforts to translate this theoretical foundation into a viable portfolio construction algorithm have been plagued by technical difficulties stemming from the instability of the original optimization problem with respect to the available data. Often, instabilities of this type disappear when a regularizing constraint or penalty term is incorporated in the optimization procedure. This approach seems not to have been used in portfolio design until very recently. To provide such a stabilization, we propose to add to the Markowitz objective function a penalty which is proportional to the sum of the absolute values of the portfolio weights. This penalty stabilizes the optimization problem, automatically encourages sparse portfolios, and facilitates an effective treatment of transaction costs. We implement our methodology using as our securities two sets of portfolios constructed by Fama and French: the 48 industry portfolios and 100 portfolios formed on size and book-to-market. Using only a modest amount of training data, we construct portfolios whose out-of-sample performance, as measured by Sharpe ratio, is consistently and significantly better than that of the naïve portfolio comprising equal investments in each available asset. In addition to their excellent performance, these portfolios have only a small number of active positions, a desirable feature for small investors, for whom the fixed overhead portion of the transaction cost is not negligible.
JEL Code
G11 : Financial Economics→General Financial Markets→Portfolio Choice, Investment Decisions
C00 : Mathematical and Quantitative Methods→General→General