

1-3 July 2024

Clement Bohr

CCAPACITY BUFFERS: EXPLAINING THE RETREAT AND RETURN OF THE PHILLIPS CURVE

Capacity Buffers: Explaining the Retreat and Return of the Phillips Curve

Clement E. Bohr

Northwestern

Since the 1960s,

- 1. Variable and labor costs shares declined
- Capacity utilization rates declined
- 3. Phillips curve flattened
- 4. Idiosyncratic volatility of sales increased

During COVID-19,

- 1. Large increase demand for goods + restriction on production capacity
- 2. Firms became capacity constrained
- 3. Phillips curve steepened

This Paper

Can the size of firms' capacity buffers explain the changing slope of the Phillips curve?

The Capacity Buffer = 1 - Capacity Utilization Rate = measure of distance to capacity constraint

Excess production capacity of capital stock to buffer against demand fluctuations

Buffer size affects slope of supply curve

Fagnart, Licandro, and Sneessens (1997); Boehm and Pandalai-Nayar, (2022)

Larger Buffer \rightarrow Smaller probability of becoming capacity constrained \rightarrow flatter supply curve

Theory

Precautionary capacity buffer due to:

- Putty-clay technology → SR capacity constraints
- Idiosyncratic demand shocks

Capacity Buffer Size, B, determines:

Probability of becoming capacity constrained

→ **Optimal price** via sales-weighted price elasticity

$$p(B) = \mu(B)W/a_l \quad \text{with markup} \quad \mu(B) = \frac{\varepsilon(B)}{\varepsilon(B)-1}$$

$$\underbrace{\varepsilon(B)}_{\text{price elasticity}} = \eta(B) \quad \underbrace{\varepsilon_p}_{\text{price elasticity}} + \underbrace{\left(1-\eta(B)\right)}_{\text{sales weighted prob. of becoming capacity constrained}} 0$$

Volatility in the probability of hitting capacity → Sensitivity of prices to demand shocks

Evidence

Prices more sensitivity to **monetary policy shocks** under smaller capacity buffers

Logit Smooth Transition Local Projection Model

$$y_{t+h} = \underset{\text{trend}}{\tau t} + F(B_t) \begin{pmatrix} \text{small capacity buffers} \\ \alpha_1^h + \beta_1^h m_t + \gamma_1' x_t \\ \text{intercept} & \text{shocks} & \text{controls} \end{pmatrix} + (1 - F(B_t)) \begin{pmatrix} \text{large capacity buffers} \\ \alpha_0^h + \beta_0^h m_t + \gamma_0' x_t \\ \end{pmatrix} + \underbrace{u_t}_{\text{residuals}}$$

- Convex state F(B) depends on capacity buffer size
- RR shocks on monthly aggregate data 1969-2008

Results: When capacity buffers, B <15%, price responsiveness increases by twice that of output

Table 1: Relative response of consumption prices to quantities across horizons							
		Horizon (months)	12	18	26	30	36
	$Any\ B$	P/C	-0.04	-0.13	0.02	0.50	1.21
	B < 15%	P/C	0.69	1.34	1.19	1.35	2.64
-	2 (1070		0.03	1.01		1.00	

ightarrow 2. larger capacity buffers ightarrow 3. flatter Phillips curve 1. Larger markups

2. Larger capacity buffers \rightarrow higher demand pass-through into sales \rightarrow 4. higher idiosyncratic volatility of sales

Expected Capacity buffer, B

Sectoral Phillips Correlations Services Goods 1961-1984, slope=0.87 1961-1984, slope=0.73 1984-2000, slope=0.57 1984-2000, slope=0.46 12.5 2000-2020, slope=-0.06 2000-2020, slope=0.07 2020-2023, slope=0.17 2020-2023, slope=0.81 10.0 10.0 7.5 Services inflation, Data 5.0 5.0 2.5 2.5 0.0 0.0 -2.5-2.5-5.0 -2.5 0.02.5 5.0 7.5 Services Output, % deviation from trend Goods Output, % deviation from trend 1960, slope=0.15 1960, slope=0.38 2020, slope=0.1 inflation, -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

COVID-19 Sectoral Inflation

Explained by combo of two shocks:

- 1. Shift in demand from services to goods
 - → Persistent sectoral taste shock
- 2. Restricted capacity from health restrictions
 - → Temporary capital productivity shock

Goods Sector:

Increase in demand + decrease in capacity → buffers collapsed → **steep Phillips Correlation**

Services Sector:

Decrease in demand + decrease in capacity → buffers remained → flat Phillips Correlation

Aggregate Inflation Decomposition:

- 59% Demand Shift
- 31% capacity restrictions
- 10% interaction

Total Nonlinear Contribution: 21%