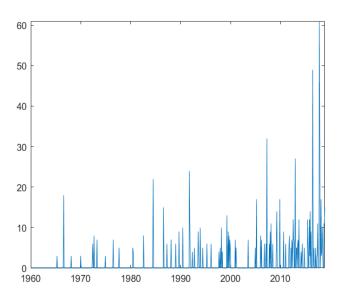
Sentimental Business Cycles

Lagerborg, Pappa, Ravn


Dicsussion by Luca Gambetti (CCA, UniTo, UAB, BGSE)

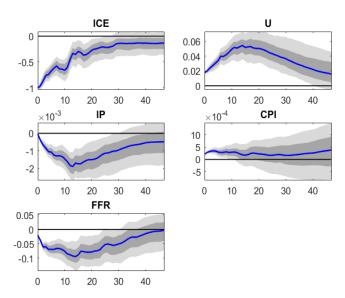
▶ QUESTION: Do sentiment/confidence shocks affect the macroeconomy?

- ▶ QUESTION: Do sentiment/confidence shocks affect the macroeconomy?
- ► ANSWER: YES, business cycle is sentimental.

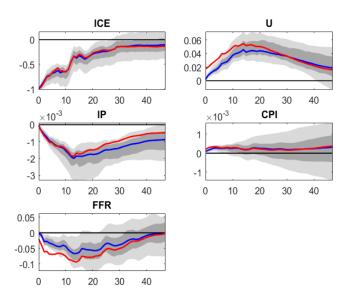
- ▶ QUESTION: Do sentiment/confidence shocks affect the macroeconomy?
- ► ANSWER: YES, business cycle is sentimental.
- ▶ NICE PAPER: contributing to the expectation-driven business cycles and the news shocks literature (vast, Barsky and Sims, Beaudry and Portier, Blanchard, L'Huillier and Lorenzoni, myself with coauthors, etc.).

Mass Shooting

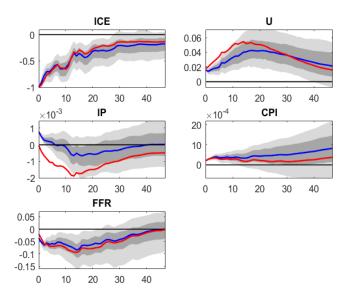
- ► MS is:
 - Exogenous


- ► MS is:
 - Exogenous
 - ► Correlated with sentiment shock,

- ► MS is:
 - Exogenous
 - ► Correlated with sentiment shock,
 - Uncorrelated with other shocks,


- ► MS is:
 - Exogenous
 - ► Correlated with sentiment shock,
 - Uncorrelated with other shocks,
- ► Great! Let's use it as an external instrument in a VAR to identify the "sentiment shock".

- ► MS is:
 - Exogenous
 - ► Correlated with sentiment shock,
 - Uncorrelated with other shocks,
- ► Great! Let's use it as an external instrument in a VAR to identify the "sentiment shock".
- ▶ VAR(18) (btw, AIC says 14), US monthly data, IP, U, ICE, CPI, FFR (baseline).


Main Results (my estimations)

IRF: Cholesky vs IV

Adding October 2017

Main Conclusion

Main Conclusion

Cycles are sentimental

► Two main points:

- ► Two main points:
 - 1. First empirical: shock identification.

- ► Two main points:
 - 1. First empirical: shock identification.
 - 2. Second theoretical: model estimation.

► Many possible reasons.

- ► Many possible reasons.
 - 1. World is a bad place.

- ► Many possible reasons.
 - 1. World is a bad place.
 - 2. Bad economic news about the future.

- ► Many possible reasons.
 - 1. World is a bad place.
 - 2. Bad economic news about the future.
 - ► Macro

- ► Many possible reasons.
 - 1. World is a bad place.
 - 2. Bad economic news about the future.
 - ► Macro
 - Financial markets

- ► Many possible reasons.
 - 1. World is a bad place. Seems to be the focus here
 - 2. Bad economic news about the future.
 - Macro
 - Financial markets

- ► Many possible reasons.
 - 1. World is a bad place. Seems to be the focus here
 - 2. Bad economic news about the future.
 - ► Macro controlling for U and IP
 - Financial markets

- ► Many possible reasons.
 - 1. World is a bad place. Seems to be the focus here
 - 2. Bad economic news about the future.
 - ► Macro controlling for U and IP
 - Financial markets absent...

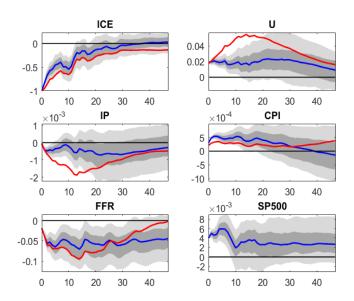
- ► Many possible reasons.
 - 1. World is a bad place. Seems to be the focus here
 - 2. Bad economic news about the future.
 - ► Macro controlling for U and IP
 - Financial markets absent...But shown to be important for news

S&P500 and VAR Residuals

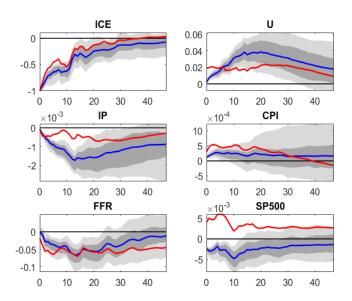
► Estimate the regression

$$\hat{u}_{it} = \beta_0 + \beta_{i1} s p_{t-1} + \beta_{i2} s p_{t-2} + \beta_{i3} s p_{t-3} + \beta_{i4} s p_{t-4} + \eta_{it}$$
(sp_t is log stock prices).

	t-stat					
	sp_{t-1}	sp_{t-2}	sp_{t-3}	sp_{t-4}		
$\overline{u_{1t}}$	3.4074	-1.2753	-1.1064	0.4293		
u_{2t}	-1.0422	0.4257	-0.7520	1.5666		
u_{3t}	-0.4170	1.1194	0.7325	-2.5667		
u_{4t}	4.1527	-2.7865	-0.1261	0.5274		
u_{5t}	0.0643	0.8492	-1.0499	0.2506		


SP500 and VAR residuals

► Ans in growth rates


t-stat						
	sp_{t-1}	sp_{t-2}	sp_{t-3}	sp_{t-4}		
$\overline{u_{1t}}$	3.3605	1.3654	0.6050	0.7391		
u_{2t}	0.9207	0.5150	0.9685	2.1359		
u_{3t}	0.4675	1.4069	2.2517	0.8745		
u_{4t}	4.1781	0.3700	0.3771	0.5684		
u_{5t}	0.0807	1.3563	0.1759	0.3039		

▶ So, add the S&P500!

VAR+S&P500

Cholesky VAR+S&P500

What is going on? A possible explanation

What is going on? A possible explanation

► S&P500 predicts the residuals.

What is going on? A possible explanation

- ► S&P500 predicts the residuals.
 - \Rightarrow VAR is noninvertible.

What is going on? A possible explanation

- ► S&P500 predicts the residuals.
 - \Rightarrow VAR is noninvertible.
 - \Rightarrow Residuals contain the past of the shock. R1


What is going on? A possible explanation

- ► S&P500 predicts the residuals.
 - \Rightarrow VAR is noninvertible.
 - \Rightarrow Residuals contain the past of the shock. R1
- ► Estimate the regression

$$ms_t = \beta_0 + \beta_{i1} ms_{t-1} + \beta_{i2} ms_{t-2} + \beta_{i3} ms_{t-3} + \beta_{i4} ms_{t-4} + \eta_{it}$$

(ms_t is mass shooting).

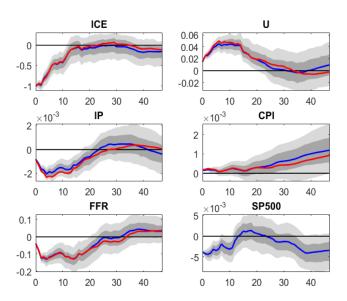
	t-stat						
	ms_{t-1}	ms_{t-2}	ms_{t-3}	ms_{t-4}			
ms_t	4.6890	-0.3358	1.4174	3.6423			

- ► Mass shooting predicts future mass shooting. R2
- ▶ R1+R2 ⇒ with S&P500 the model becomes invertible, past shocks disappear and the results change.
- ➤ Take a look at Miranda-Agippino and Ricco (2018) (very interesting!).

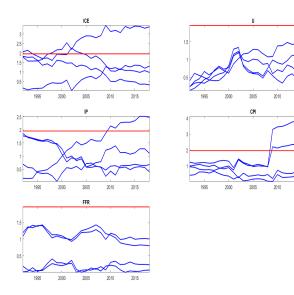
And then I have found the following...

▶ Using a different sample: 1960-1996.

t-stat						
	sp_{t-1}	sp_{t-2}	sp_{t-3}	sp_{t-4}		
u_{1t}	1.9108	-0.3538	-1.7397	1.4666		
u_{2t}	-0.4088	0.5264	-0.6900	0.6748		
u_{3t}	-1.5888	1.6382	-0.3492	-0.4737		
u_{4t}	1.1943	-0.7249	-0.6707	1.0572		
u_{5t}	0.2698	1.2207	-1.2814	-0.1778		


And then I have found the following...

▶ Using a different sample: 1960-1996.


t-stat							
	sp_{t-1}	sp_{t-2}	sp_{t-3}	sp_{t-4}			
u_{1t}	1.9108	-0.3538	-1.7397	1.4666			
u_{2t}	-0.4088	0.5264	-0.6900	0.6748			
u_{3t}	-1.5888	1.6382	-0.3492	-0.4737			
u_{4t}	1.1943	-0.7249	-0.6707	1.0572			
u_{5t}	0.2698	1.2207	-1.2814	-0.1778			

▶ Nothing is significant, S&P500 does not predict...

VAR+S&P500: 1960-1996

Recursive |t - stat|

2015

Summing up

▶ Omitting stock prices seems to create distortions in the IRF.

Summing up

- ▶ Omitting stock prices seems to create distortions in the IRF.
- ▶ The distortions are mainly attributable to the latest part of the sample.

▶ Minimization of the distance between empirical IRF and model IRF.

- ▶ Minimization of the distance between empirical IRF and model IRF.
- ▶ Model IRF are obtained from estimating the empirical VAR with model-generated data.

- Minimization of the distance between empirical IRF and model IRF.
- ▶ Model IRF are obtained from estimating the empirical VAR with model-generated data.
- ▶ (Sorry for bothering) Again, a VAR representation in terms of structural shocks does not exists in the model.

- ▶ Minimization of the distance between empirical IRF and model IRF.
- ▶ Model IRF are obtained from estimating the empirical VAR with model-generated data.
- ▶ (Sorry for bothering) Again, a VAR representation in terms of structural shocks does not exists in the model.
- ▶ The reason is that under limited information not even the agents observe the shocks.

- Minimization of the distance between empirical IRF and model IRF.
- ▶ Model IRF are obtained from estimating the empirical VAR with model-generated data.
- ▶ (Sorry for bothering) Again, a VAR representation in terms of structural shocks does not exists in the model.
- ▶ The reason is that under limited information not even the agents observe the shocks.
- ▶ So, the comparison is hard to interpret.

▶ You use the noise as external instrument in the model.

- ▶ You use the noise as external instrument in the model.
- ▶ Noise is about technology, while the empirical instrument has nothing to do.

- ▶ You use the noise as external instrument in the model.
- ▶ Noise is about technology, while the empirical instrument has nothing to do.
- ▶ How can you reconcile this?