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Abstract

How does carbon pricing affect the economy? Is it successful at reducing

emissions and how does it affect economic inequality? Exploiting institu-

tional features of the European carbon market and high-frequency data, I

estimate the aggregate and distributional effects of a carbon policy shock. I

find that a shock tightening the carbon pricing regime leads to a significant

increase in energy prices and a persistent fall in emissions. The drop in emis-

sions comes at the cost of a temporary fall in economic activity, which is not

borne equally across society: poorer households lower their consumption

significantly while richer households are barely affected. My results suggest

that targeted fiscal policy can reduce the economic costs of carbon pricing –

without compromising emission reductions.
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1. Introduction

Climate change is one of the greatest challenges of our time, posing significant
threats not only to our lives, livelihoods and the environment, but also to the
global economy. Fighting climate change, however, has proved very difficult be-
cause of its global nature and the pervasive externalities involved. As the threats
of a climate crisis are becoming more acute and visible, climate change is now a
key priority for policymakers around the world. There is broad agreement that
putting a price on carbon emissions is the most effective way to mitigate climate
change and several countries have enacted national carbon pricing policies, either
via carbon taxes or cap and trade systems. Yet, little is known about the economic
effects of such policies. While arguably beneficial in the longer term, there could
be short-term economic costs and important distributional consequences.

This paper aims to contribute filling this gap. I propose a novel approach to
estimate the dynamic causal effects of a carbon policy shock, exploiting institu-
tional features of the European carbon market and high-frequency data. The Eu-
ropean Union Emissions Trading System (EU ETS) is the largest and oldest carbon
market in the world, accounting for around 40 percent of the EU’s greenhouse
gas (GHG) emissions. The market was established in phases and the regulations
have been updated continuously. Following an event study approach, I collected
113 regulatory update events concerning the supply of emission allowances. By
measuring the change in the carbon futures price in a tight window around the
regulatory news, I am able to isolate a series of carbon policy surprises. Reverse
causality can be plausibly ruled out as economic conditions are known and priced
by the market prior to the regulatory news and unlikely to change within the tight
window. Using the surprise series as an instrument, I estimate the aggregate and
distributional effects of a structural carbon policy shock.

I find that carbon pricing has significant effects on emissions and the econ-
omy. A carbon policy shock tightening the carbon pricing regime causes a strong,
immediate increase in energy prices and a persistent fall in overall GHG emis-
sions. Thus, carbon pricing turns out to be successful in achieving its goal of
reducing emissions. However, this does not come without cost. Consumer prices
rise significantly and economic activity falls, which is reflected in lower output
and higher unemployment. Crucially, the fall in activity appears to be somewhat
less persistent than the fall in emissions – improving the emissions intensity in
the longer term. The stock market falls for about one and a half years but then
rebounds and turns positive after. The euro depreciates in real terms and imports
fall significantly. While the shock leads to somewhat heightened financial un-
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certainty and a short-term deterioration of financial conditions, the main trans-
mission channel appears to work through higher carbon prices, which passing
through energy prices leads to lower consumption and investment. At the same
time, carbon pricing creates an incentive for green innovation, causing a signifi-
cant uptick in low-carbon patenting.

Carbon policy shocks have also contributed meaningfully to historical varia-
tions in prices, emissions and macroeconomic aggregates. Importantly, however,
they did not account for the fall in emissions associated with the global financial
crisis – supporting the validity of the identified shock.

My results illustrate that carbon pricing is successful at reducing emissions
and mitigating climate change. However, this comes at the cost of lower eco-
nomic activity today. Importantly, these costs are not equally distributed across
society. Using detailed household-level data, I document pervasive heterogene-
ity in the expenditure response to carbon policy shocks. While the expenditure
of higher-income households only falls marginally, low-income households re-
duce their expenditure significantly and persistently. These households are more
hardly affected in two ways. First, they spend a larger share of their dispos-
able income on energy and thus the higher energy bill leaves significantly less
resources for other expenditures. Second, they also experience the largest fall in
income, as they tend to work in sectors that are more exposed to carbon pricing.
Crucially, the estimated magnitudes are much larger than what can be accounted
for by the direct effect through energy prices alone – pointing to an important
role of indirect, general equilibrium effects via income and employment.

These findings suggest that targeted fiscal policies could be an effective way
to reduce the economic costs of carbon pricing. To the extent that energy demand
is inelastic, which turns out to be the case especially for poorer households, this
should not compromise the reductions in emissions. I also show that carbon pric-
ing leads to a significant fall in the support of climate-related policies among
low-income households. Thus, such targeted compensations may also help to
increase the public support of such policies.

A comprehensive series of sensitivity checks indicate that the results are ro-
bust along a number of other dimensions including the selection of event dates,
the estimation technique, the model specification, and the sample period. Im-
portantly, the results are also robust to accounting for confounding news over the
event window. Controlling for such background noise using an heteroskedasticity-
based estimator produces very similar results, even though the responses are a bit
less precisely estimated.
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Related literature and contribution. This paper is related to a growing litera-
ture studying the effects of climate policy and carbon pricing in particular. While
there is mounting evidence on the effectiveness of such policies for emission re-
ductions (Lin and Li, 2011; Martin, De Preux, and Wagner, 2014; Andersson, 2019;
Pretis, 2019), less is known about the economic effects. A number of studies have
analyzed the macroeconomic effects of the British Columbia carbon tax, finding
no significant impacts on GDP (Metcalf, 2019; Bernard, Kichian, and Islam, 2018).
Metcalf and Stock (2020a,b) study the macroeconomic impacts of carbon taxes in
European countries. They find no robust evidence of a negative effect of the tax
on employment or GDP growth.1 In contrast, theoretical studies based on com-
putable general equilibrium models tend to find contractionary output effects
(see e.g. McKibbin, Morris, and Wilcoxen, 2014; McKibbin et al., 2017; Goulder
and Hafstead, 2018). By way of summary, the existing evidence on the economic
effects of carbon pricing is still scarce and inconclusive. I contribute to this litera-
ture by providing new estimates for the macroeconomic impact based on the EU
ETS, the largest carbon market in the world.

A large literature has studied the macroeconomic effects of discretionary tax
changes more generally. To address the endogeneity of tax changes, the litera-
ture has used SVAR techniques (Blanchard and Perotti, 2002) and narrative meth-
ods (Romer and Romer, 2010). The narrative approach in particular points to
large macroeconomic effects of tax changes; a tax increase leads to a significant
and persistent decline of output and its components (see also Mertens and Ravn,
2013; Cloyne, 2013). However, it is unclear how much we can learn from these
estimates with respect to carbon pricing, which is enacted to correct a clear exter-
nality and not because of past decisions or ideology. While the motivation behind
carbon pricing is arguably long-term and thus more likely unrelated to the cur-
rent state of the economy – similar to the tax changes considered in Romer and
Romer (2010) – it is still perceivable that regulatory decisions also take economic
conditions into account.

To address this potential endogeneity in carbon pricing, I propose a novel
identification strategy exploiting high-frequency variation. From a methodologi-
cal viewpoint, my approach is closely related to the literature on high-frequency
identification, which has been developed in the monetary policy setting (Kuttner,
2001; Gürkaynak, Sack, and Swanson, 2005; Gertler and Karadi, 2015; Nakamura
and Steinsson, 2018, among others) and more recently employed in the global oil

1Contrary to this paper, Metcalf and Stock (2020a,b) do not study the effects of the EU ETS but
national carbon taxes, which are present in many European countries and cover sectors that are
not included in the EU ETS.
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market context (Känzig, 2021). In this literature, policy surprises are identified us-
ing high-frequency asset price movements around policy events, such as FOMC
or OPEC announcements. The idea is to isolate the impact of policy news by mea-
suring the change in asset prices in a tight window around the announcements.
I contribute to this literature by extending the high-frequency identification ap-
proach to climate policy, exploiting institutional features of the European carbon
market.

This paper is not the first to study regulatory news in the European carbon
market. A number of studies have used event study techniques to analyze the
effects of regulatory news on carbon, energy and stock prices (Mansanet-Bataller
and Pardo, 2009; Fan et al., 2017; Bushnell, Chong, and Mansur, 2013, among
others). To the best of my knowledge, however, this paper is the first to exploit
these regulatory updates to analyze the economic effects of carbon pricing. The
approach is very general and could also be employed to evaluate the performance
of other cap and trade systems.

Equipped with this novel identification strategy, I provide new direct ev-
idence not only on the aggregate but also on the distributional consequences
of carbon pricing. There is growing consensus that a sustainable transition to
a low-carbon economy has to be fair and equitable (see e.g. European Comis-
sion, 2021). Therefore, it is crucial to understand how carbon pricing affects
economic inequality. I find that carbon pricing in the EU has been more regres-
sive than commonly thought, burdening lower-income households substantially
more than richer ones. This stands in contrast to existing studies, which tend
to find a more modest regressive impact (Beznoska, Cludius, and Steiner, 2012;
Ohlendorf et al., 2021). My findings illustrate the importance of accounting for
indirect, general-equilibrium effects via income and employment; solely focus-
ing on the direct effects via higher energy prices can massively understate the
actual distributional impact. Finally, I show that the distributional consequences
do not only matter for inequality but also for the transmission of the policy to the
macroeconomy.

Roadmap. The paper proceeds as follows. In the next section, I provide some
background information on the European carbon market and detail relevant reg-
ulatory events in this market. In Section 3, I discuss the high-frequency identifica-
tion strategy and perform some diagnostic checks on the carbon policy surprise
series. Section 4 discusses the econometric approach and introduces the exter-
nal and internal instrument models. Section 5 presents the results on the aggre-
gate effects of carbon pricing. I start by analyzing the instrument strength before
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studying the effects on emissions and the macroeconomy, the historical impor-
tance and potential propagation channels. Section 6 looks into the heterogeneous
effects of carbon pricing, using detailed household-level data on income and ex-
penditure. I analyze the distributional impact, how heterogeneity matters for the
transmission and end with some policy implications. In Section 7, I perform a
number of robustness checks. Section 8 concludes.

2. The European carbon market

The European emissions trading system is the cornerstone of the EU’s policy to
combat climate change. It is the largest carbon market in the world and also has
one of the longest implementation histories. Established in 2005, it covers more
than 11,000 heavy energy-using installations and airlines, accounting for around
40 percent of the EU’s greenhouse gas emissions.

The market operates under the cap and trade principle. Different from a car-
bon tax, a cap is set on the total amount of certain greenhouse gases that can be
emitted by installations covered by the system. The cap is reduced over time so
that total emissions fall. Within the cap, emission allowances are auctioned off or
allocated for free among the companies in the system, and can subsequently be
traded. Alternatively, companies can also use limited amounts of international
credits from emission-saving projects around the world. Regulated companies
must monitor and report their emissions. Each year, the companies must surren-
der enough allowances to cover all their emissions. This is enforced with heavy
fines. If a company reduces its emissions, it can keep the spare allowances to
cover its future needs or sell them to another company that is short of allowances.
A binding limit on the total number of allowances available in the system guar-
antees a positive price on carbon (see European Comission, 2020a, for more infor-
mation).

There exist several organized markets where EU emission allowances (EUAs)
can be traded. An EUA is defined as the right to emit one ton of carbon diox-
ide equivalent gas and is traded in spot markets such as Bluenext (Paris), EEX
(Leipzig) or Nord Pool (Oslo). Furthermore, there exist also liquid futures mar-
kets on EUAs, such as the EEX and ICE (London). In 2018, the cumulative trad-
ing volume in the relevant futures and spot markets was about 10 billion EUA
(DEHSt, 2019).

A brief history of the EU ETS. The development of the EU ETS has been di-
vided into different phases. The evolution of the carbon price over the phases of
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the system is depicted in Figure 1. The first phase lasted three years, from 2005 to
2007. This period was a pilot phase to prepare for phase two, where the system
had to run efficiently to help the EU meet its Kyoto targets. In this initial phase,
almost all allowances were freely allocated at the national level. In absence of reli-
able emissions data, phase one caps were set on the basis of estimates. In 2007, the
carbon price fell significantly as it became apparent that the total amount of al-
lowances issued exceeded total emissions significantly, and eventually converged
to zero as phase one allowances could not be transferred to phase two.

Figure 1: The carbon price in the EU

Notes: The EUA price, as measured by the price of the first EUA futures contract
over the different phases of the EU ETS.

The second phase ran from 2008 until 2012, coinciding with the first commit-
ment period of the Kyoto Protocol where the countries in the EU ETS had con-
crete emission targets to meet. Because verified annual emissions data from the
pilot phase was now available, the cap on allowances was reduced in phase two,
based on actual emissions. The proportion of free allocation fell slightly, several
countries started to hold auctions, and businesses were allowed to buy a limited
amount of international credits. The commission also started to extend the sys-
tem to cover more gases and sectors; in 2012 the aviation sector was included,
even though this only applies for flights within the European Economic Area.
Despite these changes, EU carbon prices remained at moderate levels. This was
mainly because the 2008 economic crisis led to emissions reductions that were
greater than expected, which in turn led to a large surplus of allowances and
credits weighing down prices.

The subsequent third phase began in 2013 and ran until the end of 2020.
Learning from the lessons of the previous phases, the system was changed sig-
nificantly in a number of key respects. In particular, the new system relies on a
single, EU-wide cap on emissions in place of the previous national caps, auction-
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ing became the default method for allocating allowances instead of the previous
free allocation and harmonized allocation rules apply to the allowances still allo-
cated for free, and the system covers more sectors and gases, in particular nitrous
oxide and perfluorocarbons in addition to carbon dioxide. In 2014, the Commis-
sion postponed the auctioning of 900 million allowances to address the surplus of
emission allowances that has built up since the Great Recession (‘back-loading’).
Later, the Commission introduced a market stability reserve, which started oper-
ating in January 2019. This reserve has the aim to reduce the current surplus of
allowances and improve the system’s resilience to major shocks by adjusting the
supply of allowances to be auctioned. To this end, the back-loaded allowances
were transferred to the reserve rather than auctioned in the last years of phase
three and unallocated allowances were transferred to the reserve as well.

The current, fourth phase spans the period from 2021 to 2030. The legislative
framework for this trading period was revised in early 2018. In order to achieve
the EU’s 2030 emission reduction targets, the pace of annual reductions in to-
tal allowances is increased to 2.2 percent from the previous 1.74 percent and the
market stability reserve is reinforced to improve the EU ETS’s resilience to future
shocks. More recently, the Commission has proposed to further revise and ex-
pand the scope of the EU ETS, with the aim to achieve a climate-neutral EU by
2050 (see European Comission, 2020a).

Regulatory events. Given its pioneering role, the establishment of the European
carbon market has followed a learning-by-doing process. As illustrated above,
since the start in 2005, the system has been expanded considerably and its insti-
tutions and rules have been continuously updated to address issues encountered
in the market, improve market efficiency, and reduce information asymmetry and
market distortions.

Building on the event study literature, I collected a comprehensive list of reg-
ulatory events in the EU ETS. These regulatory update events can take the form
of a decision of the European Commission, a vote of the European Parliament or
a judgement of an European court, for instance. Of primary interest in this paper
are regulatory news regarding the supply of emission allowances. Thus, I focus on
news concerning the overall cap in the EU ETS, the free allocation of allowances,
the auctioning of allowances as well as the use of international credits. Going
through the official journal of the European Union as well as the European Com-
mission Climate Action news archive, I could identify 113 such events during the
period between 2005 and 2018. The events as well as the sources are detailed in
Table A.1 in the Appendix. In the first two phases, the key events concern de-
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cisions on the national allocation plans (NAP) of the individual member states,
e.g. the commission approving or rejecting allocation plans or a court ruling in
case of legal conflicts about the free allocation of allowances. With the move to
auctioning as the default way of allocating allowances, decisions on the timing
and quantities of emission allowances to be auctioned became the most impor-
tant regulatory news in phase three. After the pilot phase of the system, there
were also a number of important events related to the use and entitlement of in-
ternational credits. Finally, there are a few events on the setting of the overall cap
in the system.

The selection of events is a crucial factor in event studies. As the baseline, I
use all of the identified events, however, in Section 7, I study the sensitivity of the
results with respect to different event types in detail.

Carbon futures markets. Under the EU ETS, the right to emit a particular
amount of greenhouse gases becomes a tradable commodity. The most liquid
markets to trade these emission allowances are the futures markets at the EEX
and the ICE. In this paper, I focus on data from the ICE, which has been found to
dominate the price discovery process in the European carbon market (Stefan and
Wellenreuther, 2020). The ICE EUA futures are listed on a quarterly expiry cycle
and are traded up to 6 quarters out. The contract size is 1,000 EUAs and delivery
is physical.

3. High-frequency identification

Since policies to fight climate change are long-term in nature, they are likely
less subject to endogeneity concerns than other fiscal polices (Romer and Romer,
2010). However, to properly address the concern that regulatory decisions in the
carbon market may take economic conditions into account, I implement a high-
frequency identification approach.

The institutional framework of the European carbon market provides an ideal
setting in this respect. First, as discussed above, there are frequent regulatory
updates in the market that can have significant effects on the price of emission
allowances. Second, there exist liquid futures markets for trading emission al-
lowances. This motivates the idea to construct a series of carbon policy surprises
by looking at how carbon prices change around regulatory events in the carbon
market. By measuring the price change within a sufficiently tight window around
the regulatory news, it is possible to isolate the impact of the regulatory decision.
Reverse causality of the state of the economy can be plausibly ruled out because
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it is known and priced prior to the decision and unlikely to change within the
tight window.

To fix ideas, the carbon policy surprise series is computed by measuring the
percentage change in the EUA futures price on the day of the regulatory event to
the last trading day before the event:

CPSurpriset,d = Ft,d − Ft,d−1, (1)

where d and t indicate the day and the month of the event, respectively, and Ft,d

is the (log) settlement price of the EUA futures contract in month t on day d.
Assuming that risk premia do not change over the narrow event window, we can
interpret the resulting surprise as a revision in carbon price expectations caused
by the regulatory news.2

EUA futures are traded at different maturities. I focus here on the front con-
tract (the contract with the closest expiry date), which is the most liquid. Im-
portantly, near-dated contracts also tend to be less sensitive to risk premia than
contracts with longer maturities (Baumeister and Kilian, 2017; Nakamura and
Steinsson, 2018). Thus, focusing on the front contract helps to further mitigate
concerns about time-varying risk premia.3

The daily surprises, CPSurpriset,d, are then aggregated to a monthly series,
CPSurpriset, by summing over the daily surprises in a given month. In months
without any regulatory events, the series takes zero value.

The resulting carbon policy surprise series is shown in Figure 2. We can see
that regulatory news can have a substantial impact on carbon prices, with some
news moving prices in excess of 20 percent. In April 2007, for instance, when the
Commission approved the NAPs of Austria and Hungary, carbon prices fell by
around 30 percent. Later in November, when the general court ruled on ex-post
adjustments of Germany’s NAP, the carbon price rose by over 30 percent, even
though prices were already at very low levels with the end of the pilot phase in
sight. Throughout the second phase, the regulatory surprises were a bit smaller,
especially at the beginning. Towards the end, there were some larger surprises,
for instance in November 2011 when a new regulation determining the volume
of allowances to be auctioned prior to 2013 came into force. Some very large

2While futures prices are in general subject to risk premia, there is evidence that these premia
vary primarily at lower frequencies (Piazzesi and Swanson, 2008; Hamilton, 2009; Nakamura and
Steinsson, 2018). If that is the case, risk premia are differenced out in the computation of the high-
frequency surprise series.

3As shown in Appendix B.4, using contracts further out produces results that are at least qual-
itatively similar. However, the first stage gets considerably weaker, further supporting the use of
the front contract.
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Figure 2: The carbon policy surprise series

Notes: This figure shows the carbon policy surprise series, constructed by mea-
suring the percentage change of the EUA futures price around regulatory pol-
icy events concerning the supply of emission allowances in the European carbon
market.

surprises occurred at the beginning of the third phase. On April 16, 2013 the Eu-
ropean Parliament voted against the Commission’s back-loading proposal, which
led to a massive price fall of 43 percent. In September 2013, the Commission fi-
nalized the free allocation to the industrial sector in phase three, which led to a
price increase of 10 percent. And in March 2014, the Commission approved two
batches of international credit entitlement tables, sending prices down by almost
20 percent, just to name a few.

A crucial choice in high-frequency identification concerns the size of the event
window. There is a trade-off between capturing the entire response to the an-
nouncement and the threat of other news confounding the response, so-called
background noise (cf. Nakamura and Steinsson, 2018). Because the exact release
times of the regulatory news detailed in Table A.1 are mostly unavailable, it is
practically infeasible to use an intraday window. However, to mitigate concerns
about background noise when using a daily window, I also present results from
a heteroskedasticity-based approach that allows for background noise in the sur-
prise series (see Section 7).

Finally, to be able to interpret the resulting series as a carbon policy surprises,
it is crucial that the events do not release other information such as news about
the demand of emission allowances or economic activity in the EU more gen-
erally. To address these concerns, I put great care in selecting regulatory update
events that were about very specific changes to the supply of emission allowances
in the European carbon market and do not include broader events such as out-
comes of Conference of the Parties (COP) meetings or other international confer-
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ences. Furthermore, I show that excluding the events regarding the overall cap,
which are generally broader in scope, leads to very similar results. Likewise, ex-
cluding events that overlap with broader news about the carbon market does not
change the results materially (see Section 7 for more details). Lastly, the focus
on the supply of allowances is also confirmed by looking how some of the major
events are received in the press.4

Diagnostics. To further assess the validity of the carbon policy surprise series, I
perform a number of diagnostic checks. Desirable properties of a surprise series
are that it should not be autocorrelated, forecastable nor correlated with other
structural shocks (see Ramey, 2016, for a detailed discussion).

Inspecting the autocorrelation function, I find little evidence for serial corre-
lation. The p-value for the Q-statistic that all autocorrelations are zero is 0.92. I
also find no evidence that macroeconomic or financial variables have any power
in forecasting the surprise series. For all variables considered, the p-values for
the Granger causality test are far above conventional significance levels, with the
joint test having a p-value of 0.99. I also show that the surprise series is uncor-
related with other structural shock measures from the literature, including oil,
uncertainty, financial, fiscal and monetary policy shocks. The corresponding fig-
ures and tables can be found in Appendix B.1. Overall, this evidence supports
the validity of the carbon policy surprise series.

4. Econometric approach

As illustrated above, the carbon policy surprise series has many desirable prop-
erties. Nonetheless, it is only a partial measure of the shock of interest because
it may not capture all relevant instances of regulatory news in the carbon mar-
ket and could be measured with error (see Stock and Watson, 2018, for a detailed
discussion of this point).

Thus, I do not use it as a direct shock measure but as an instrument. Provided
that the surprise series is correlated with the carbon policy shock but uncorre-
lated with all other shocks, we can use it to estimate the dynamic causal effects
of a carbon policy shock. Because of the short sample at hand, I rely on VAR
techniques for estimation. For identification, I use both an external instrument
(Stock, 2008; Stock and Watson, 2012; Mertens and Ravn, 2013) and an internal
instrument approach (Ramey, 2011; Plagborg-Møller and Wolf, 2019). In the ex-

4See e.g. https://www.bbc.com/news/science-environment-22167675 or https://www.
argusmedia.com/en/news/2234159-eu-eyes-42pc-lrf-extended-scope-for-ets.
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ternal instrument approach, the surprise series is used as an instrument external
to the VAR model. While this approach tends to be very efficient, it provides bi-
ased estimates if the VAR is not invertible. In contrast, the internal instrument
approach, which includes the instrument as the first variable in a recursive VAR,
is robust to problems of non-invertibility.

An alternative approach would be to estimate the dynamic causal effects us-
ing local projections (see Jordà, Schularick, and Taylor, 2015; Ramey and Zubairy,
2018). However, this approach is quite demanding given the short sample, as it
involves a distinct IV regression for each impulse horizon. Importantly, Plagborg-
Møller and Wolf (2019) show that the internal instrument VAR and the LP-IV rely
on the same invertibility-robust identifying restrictions and identify, in popula-
tion, the same relative impulse responses. In Appendix B.2, I compare the LP-IV
to the internal instrument VAR responses in the sample at hand. Reassuringly, the
responses turn out to be similar, even though the LP responses are more jagged
and less precisely estimated.

4.1. Framework

Consider the standard VAR model

yt = b + B1yt−1 + · · ·+ Bpyt−p + ut, (2)

where p is the lag order, yt is a n× 1 vector of endogenous variables, ut is a n× 1
vector of reduced-form innovations with covariance matrix Var(ut) = Σ, b is a
n× 1 vector of constants, and B1, . . . , Bp are n× n coefficient matrices.

Under the assumption that the VAR is invertible, we can write the innovations
ut as linear combinations of the structural shocks εt:

ut = Sεt. (3)

By definition, the structural shocks are mutually uncorrelated, i.e. Var(εt) = Ω is
diagonal. From the invertibility assumption (3), we get the standard covariance
restrictions Σ = SΩS′.

We are interested in characterizing the causal impact of a single shock. With-
out loss of generality, let us denote the carbon policy shock as the first shock in
the VAR, ε1,t. Our aim is to identify the structural impact vector s1, which corre-
sponds to the first column of S.

External instrument approach. Identification using external instruments works
as follows. Suppose there is an external instrument available, zt. In the applica-
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tion at hand, zt is the carbon policy surprise series. For zt to be a valid instrument,
we need

E[ztε1,t] = α 6= 0 (4)

E[ztε2:n,t] = 0, (5)

where ε1,t is the carbon policy shock and ε2:n,t is a (n− 1)× 1 vector consisting
of the other structural shocks. Assumption (4) is the relevance requirement and
assumption (5) is the exogeneity condition. These assumptions, in combination
with the invertibility requirement (3), identify s1 up to sign and scale:

s1 ∝
E[ztut]

E[ztu1,t]
, (6)

provided that E[ztu1,t] 6= 0.5 To facilitate interpretation, we scale the structural
impact vector such that a unit positive value of ε1,t has a unit positive effect on
y1,t, i.e. s1,1 = 1. I implement the estimator with a 2SLS procedure and estimate
the coefficients above by regressing ût on û1,t using zt as the instrument. To con-
duct inference, I employ a residual-based moving block bootstrap, as proposed
by Jentsch and Lunsford (2019), and use Hall’s percentile interval to compute the
bands.

Internal instrument approach. To assess potential problems of non-
invertibility, I also employ an internal instrument approach. For identification,
we have to assume in addition to (4)-(5) that the instrument is orthogonal to
leads and lags of the structural shocks:

E[ztεt+j] = 0, for j 6= 0. (7)

In return, we can dispense of the invertibility assumption underlying equation
(3).

Under these assumptions, we can estimate the dynamic causal effects by
augmenting the VAR with the instrument ordered first, ȳt = (zt, y′t)

′, and
computing the impulse responses to the first orthogonalized innovation, s̄1 =

[chol(Σ̄)]·,1/[chol(Σ̄)]1,1. As Plagborg-Møller and Wolf (2019) show, this ap-
proach consistently estimates the relative impulse responses even if the instru-
ment is contaminated with measurement error or if the shock is non-invertible.

5To be more precise, the VAR does not have to be fully invertible for identification with external
instruments. As Miranda-Agrippino and Ricco (2018) show, it suffices if the shock of interest is
invertible in combination with a limited lead-lag exogeneity condition.
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To conduct inference, I rely again on a residual-based moving block bootstrap.

4.2. Empirical specification

Studying the macroeconomic impact of carbon policy requires modeling the Eu-
ropean economy and the carbon market jointly. The baseline specification con-
sists of eight variables. For the carbon block, I use the energy component of the
HICP as well as total GHG emissions.6 For the macroeconomic block, I include
the headline HICP, industrial production, the unemployment rate, the policy rate,
a stock market index, as well as the real effective exchange rate (REER).7 More in-
formation on the data and its sources can be found in Appendix A.2.

The sample spans the period from January 1999, when the euro was intro-
duced, to December 2018. Recall, that the carbon policy surprise series is only
available from 2005 when the carbon market was established. To deal with this
discrepancy, the missing values in the surprise series are censored to zero (see
Noh, 2019, for a theoretical justification of this approach). The motivation for
using a longer sample is to increase the precision of the estimates. However, re-
stricting the sample to 2005-2018 produces very similar results.8

Following Sims, Stock, and Watson (1990), I estimate the VARs in levels. Apart
from the unemployment and the policy rate, all variables enter in log-levels. As
controls I use six lags of all variables and in terms of deterministics only a con-
stant term is included. However, the results turn out the be robust with respect
to all of these choices (see Section 7).

5. The aggregate effects of carbon pricing

5.1. First stage

The main identifying assumption behind the (external) instrument approach is
that the instrument is correlated with the structural shock of interest but uncor-
related with all other structural shocks. However, to be able to conduct standard
inference, the instrument has to be sufficiently strong. To analyze whether this

6Unfortunately, GHG emissions are only available at the annual frequency. Therefore, I con-
struct a monthly measure of emissions using the Chow-Lin temporal disaggregation method with
indicators from Quilis’s (2020) code suite. As the relevant monthly indicators, I include the HICP
energy and industrial production. The results are robust to extending the list of indicators used.

7A delicate choice concerns the monetary policy indicator. As the baseline, I use the 3-month
Euribor. Using the shadow rate or longer-term government bond yields produces similar results.

8Note that while the carbon market was only established in 2005, the EU agreed to the Kyoto
protocol in 1997 and started planning on how to meet its emission targets shortly after. The
directive for establishing the EU ETS came into force in October 2003 (Directive 2003/87/EC).
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is the case, I perform the weak instruments test by Montiel Olea and Pflueger
(2013).

The heteroskedasticity-robust F-statistic in the first stage of the external in-
strument VAR is 20.95. Assuming a worst-case bias of 20 percent with a size
of 5 percent, the corresponding critical value is 15.06. As the test statistic lies
clearly above the critical value, we conclude that the instrument appears to be
sufficiently strong to conduct standard inference.

5.2. The impact on emissions and the macroeconomy

Having established that the carbon policy surprise series is a strong instrument, I
present now the results from the external and internal instrument models. Figure
3 shows the impulse responses to the identified carbon policy shock, normalized
to increase the HICP energy component by one percent on impact. Panel A de-
picts the responses from the external instrument VAR and Panel B presents the
responses from the internal instrument model. I start by discussing the results
from the external instrument approach.

A restrictive carbon policy shock leads to a strong, immediate increase in the
energy component of the HICP and a significant and persistent fall in GHG emis-
sions. Thus, carbon pricing appears to be successful at reducing emissions and
mitigating climate change. Turning to the macroeconomic variables, we can see
that the fall in emissions does not come without cost. Consumer prices, as mea-
sured by the HICP, increase, industrial production falls, and the unemployment
rate rises significantly. The labor market response turns out to be particularly
pronounced, consistent with reallocation frictions in the economy. However, the
fall in activity and industrial production in particular appears to be less persistent
than the fall in emissions – implying an improvement in the emissions intensity
in the longer run. While headline consumer prices increase persistently, the re-
sponse of core HICP turns out to be more short-lived (see Appendix B.2 for more
details). Monetary policy seems to largely look through the inflationary pressures
caused by the carbon policy shock, as reflected in the insignificant policy rate re-
sponse. Stock prices fall significantly on impact but recover quite quickly and
even turn positive after about two years. Finally, the real exchange rate depreci-
ates significantly.

In terms of magnitudes, a carbon policy shock increasing energy prices by 1
percent causes a decrease in GHG emissions and industrial production by around
0.5 percent, a rise in the unemployment rate of 0.2 percentage points and an in-
crease in consumer prices of slightly more than 0.15 percent – measured at the
peak of the responses. Thus, the responses are not only statistically but also eco-
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Panel A: External instrument approach Panel B: Internal instrument approach

Figure 3: Impulse responses to a carbon policy shock

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP energy by 1 percent on impact. The solid line is the point
estimate and the dark and light shaded areas are 68 and 90 percent confidence bands, respectively.
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nomically significant.

The results from the internal instrument model turn out to be very similar.
The signs are all consistent and the responses are also similar in shape. The main
difference lies in the response of energy prices, which turns out to be stronger
and more persistent than in the external instrument model. Consequently, the
magnitudes for emissions and the economic variables also turn out to be larger.
It should be noted, however, that the responses are also less precisely estimated.
Overall, these findings suggest that the results are robust to relaxing the assump-
tion of invertibility. In the remainder of the paper, I thus use the external instru-
ments model as the baseline.

By way of summary, these findings clearly illustrate the policy trade-off be-
tween reducing emissions and thus the future costs of climate change and the
current economic costs associated with climate change mitigation policies. My
results also point to a strong pass-trough of carbon to energy prices, as can be
seen from the significant energy price response. Unfortunately, it is not possi-
ble to quantify the pass-through directly, as my baseline specification does not
include the carbon price, which only became available in 2005 when the carbon
market was established. However, estimates from a model including the carbon
price, estimated on the shorter sample, point to a pass-through of around 20 per-
cent at its peak (see Appendix B.2).

5.3. Historical importance

In the previous section, we have seen that carbon policy shocks can have sig-
nificant effects on emissions and the economy. An equally important question,
however, is how much of the historical variation in the variables of interest can
carbon policy account for? To this end, I perform a historical decomposition ex-
ercise. To get a better idea of the average contribution, I also perform a variance
decomposition in Appendix B.2.

Figure 4 shows the historical contribution of carbon policy shocks to energy
price inflation and GHG emissions growth. We can see that carbon policy shocks
have contributed meaningfully to variations in energy prices and GHG emissions
in many episodes. On average, carbon policy shocks account for about a third of
the variations in energy prices and a quarter of the variations in emissions at
horizons up to one year. Furthermore, carbon policy shocks can also explain a
non-negligible share of the variations in other macroeconomic and financial vari-
ables (see Appendix B.2). Importantly, we can also see that the significant fall
in emissions in the aftermath of the global financial crisis was not driven by car-
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bon policy shocks. This result is reassuring that the high-frequency identification
strategy is working as the fall in emissions during the Great Recession was clearly
driven by lower demand and not supply-specific factors in the European carbon
market.

Panel A: HICP energy inflation

Panel B: GHG emissions growth

Figure 4: Historical decomposition of energy inflation and emissions growth

Notes: The figure shows the cumulative historical contribution of carbon policy shocks
over the estimation sample for a selection of variables against the actual evolution of
these variables. Panel A shows the historical contribution to HICP energy inflation, Panel
B presents the contribution to GHG emissions growth. The solid line is the point estimate
and the dark and light shaded areas are 68 and 90 percent confidence bands, respectively.

5.4. Propagation channels

Having established that carbon policy shocks are an important driver of the econ-
omy, we now analyze in more detail the underlying transmission channels.

The role of energy prices. The above results suggest that energy prices play a
crucial role in the transmission of carbon policy shocks. Power producers seem to
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pass through the emission costs to energy prices to a significant extent, which is in
line with previous empirical evidence (see e.g. Veith, Werner, and Zimmermann,
2009; Bushnell, Chong, and Mansur, 2013). To further corroborate this channel, I
perform an event study using daily stock market data. More specifically, I map
out the effects of carbon policy surprises on carbon futures and stock prices by
running the following set of local projections:

qi,d+h − qi,d−1 = βi
0 + ψi

hCPSurprised + βi
h,1∆qi,d−1 + . . . + βi

h,p∆qi,d−p + ξi,d,h,

(8)

where qi,d+h is the (log) price of asset i after h days following the event d,
CPSurprised is the carbon policy surprise on event day. ψi

h measures the effect on
asset price i at horizon h. For inference, I follow the lag-augmentation approach
proposed by Montiel Olea and Plagborg-Møller (2020). In particular, I augment
the controls by an additional lag and use heteroskedasticity-robust standard er-
rors.

Figure 5: Carbon prices and stock market indices
Notes: Responses of carbon futures prices and stock indices for the market and the utility
sector to a carbon policy surprise. The sample spans the period from April 22, 2005 to
December 31, 2018. As controls, I use 15 lags of the respective dependent variable.

The results are shown in Figure 5. We can see that carbon policy surprises
lead to a significant increase in carbon futures prices. The front contract increases
significantly for about three weeks. The effect turns out to be quite persistent
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as the price of the second contract, which expires in the following quarter, also
increases significantly. Turning to the stock market, we can see that the market
does not seem to move immediately following carbon surprises. Only after about
one week, the index starts to fall significantly. This may reflect the fact that the
EU ETS is a relatively new market and thus market participants need some time
to process the regulatory news. Looking into potential sectoral heterogeneities,
I find that most sectors display a similar response to the market. Among the 11
GICS sectors, utilities is the only sector that stands out, displaying a significant
increase in stock prices.

These results suggest that the European utility sector is able to profit, at least
in the short run, from a more stringent carbon pricing regime. This finding
is in line with previous empirical evidence (Veith, Werner, and Zimmermann,
2009; Bushnell, Chong, and Mansur, 2013) and may be explained as follows. The
utility sector is segmented due to the structure of existing transmission networks,
which substantially limits import penetration from countries without a carbon
price. Thus, utility companies are able to increase their product prices without
losing market share. At the same time, utilities can decarbonize at relatively
low cost, for instance by switching from coal to gas-fired electricity, and sell the
excess allowances at a profit. In contrast, for industrial emitters competing in
international product markets, passing through the cost of carbon could lead to
significant losses in market share, and decarbonizing tends to be more costly.

The transmission to the macroeconomy. To better understand how carbon pric-
ing and the associated increase in energy prices affect the economy, I study the
responses of a selection of financial and macroeconomic variables. To be able to
estimate the dynamic causal effects on these variables, I extract the carbon pol-
icy shock from the monthly VAR as CPShockt = s′1Σ−1ut (for a derivation, see
Stock and Watson, 2018) and estimate the dynamic causal effects using simple
local projections:

yi,t+h = βi
0 + ψi

hCPShockt + βi
h,1yi,t−1 + . . . + βi

h,pyi,t−p + ξi,t,h, (9)

where ψi
h is the effect on variable i at horizon h. Importantly, we can also use this

approach to estimate the effects on variables that are only available at the quar-
terly or even annual frequency. In this case, we aggregate the shock CPShockt by
summing over the respective months before running the local projections. Using
the shock series directly in the local projections as opposed to the high-frequency
surprises increases the statistical power of these regressions, as the shock series
is consistently observed and spans the entire sample. Note, however, that this

21



comes at the cost of assuming invertibility. Throughout the paper, I normalize the
shock to increase the HICP energy component by one percent on impact. The con-
fidence bands are again computed using the lag-augmentation approach (Montiel
Olea and Plagborg-Møller, 2020).9

Increases in energy prices can have significant effects on the macroeconomy
(see e.g. Hamilton, 2008; Edelstein and Kilian, 2009). They directly affect house-
holds and firms by reducing their disposable income. Given that energy de-
mand is considered to be quite inelastic, consumers and firms have less money
to spend and invest after paying their energy bills (and financing their emission
allowances). Note, however, that the magnitude of this discretionary income ef-
fect is bounded by the energy share in expenditure, which is around 7 percent in
Europe. In addition, increased uncertainty about future energy prices may lead
to a further fall in spending and investment because of precautionary motives.

Energy prices also affect the economy indirectly through the general equilib-
rium responses of prices and wages and hence of income and employment. After
a carbon policy shock increasing energy prices, the direct decrease in households’
and firms’ consumption and investment expenditure will lead to lower output
and exert downward pressure on employment and wages. The additional fall in
aggregate demand induced by lower employment and wages lies at the core of
the indirect effect.

To shed light on the different transmission channels at work, I study the re-
sponses of GDP and its components in Figure 6. We can see that the shock leads
to a significant fall in real GDP. The response looks quite similar to the response of
industrial production, both in terms of shape and magnitude. Looking at the dif-
ferent components, we can see that the shock leads to a significant and persistent
fall in consumption. Investment, as measured by gross fixed capital formation,
also falls significantly but the response turns out to be somewhat less persistent.
Finally, net exports, expressed as a share of GDP, increase significantly, in line
with the real depreciation of the euro. Inspecting the responses of exports and
imports separately reveals that both exports and imports fall but imports fall by
much more causing the significant increase in net exports.

Importantly, the magnitudes of the effects are by an order of magnitude larger
than what can be accounted for by the direct effect through higher energy prices.
This suggests that indirect effects play a crucial role in the transmission of carbon
policy shocks. In Section 6, I shed more light on the role of different transmission

9Reassuringly, the comparison of the internal and external instrument models as well as the
robustness checks in Section 7 did not point to any problems of non-invertibilty. As controls in
the local projections, I use 7 lags for monthly variables, 3 lags for quarterly variables and 2 lags
for annual variables.
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Figure 6: Effect on GDP and components

Notes: Impulse responses of real GDP, consumption, investment and net exports ex-
pressed as a share of GDP.

channels using detailed household micro data.
The above results support the notion that higher energy prices and the asso-

ciated direct and indirect effects are a dominant transmission channel of carbon
pricing. However, apart from the effects through energy prices, carbon pricing
may also affect the economy through other channels, for instance by affecting
financing conditions or increased uncertainty. It turns out, however, that these
variables respond to carbon policy shocks only with a lag, similar to stock prices,
and the responses do not turn out to be very significant (see Figure B.5 in the Ap-
pendix). Thus, these alternative channels are unlikely to play a dominant role in
the transmission of carbon policy shocks.

The effect on innovation. We have seen that carbon pricing is successful in re-
ducing emissions but this comes at an economic cost, at least in the short term.
However, there could also be positive effects in the longer term, for instance by
spurring innovation in low-carbon technologies. In fact, part of the vision for the
EU ETS is to promote investment in clean, low-carbon technologies (European
Comission, 2020a).

To analyze this channel in more detail, I study how the patenting activity in
climate change mitigation technologies is affected by the carbon policy shock.
The European Patent Office (EPO) has developed specific classification tags for
climate change mitigation technologies.
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Figure 7: Patenting in climate change mitigation technologies

Notes: Impulse responses of patenting activity in climate change mitigation technologies.
Depicted is the response of the number of climate change mitigation patent filings, in
absolute terms (left panel) and as a share of all patents filed at the EPO (right panel).

The results are shown in Figure 7. We can see that the shock leads to a signifi-
cant increase in low-carbon patenting, both in absolute terms and also relative
to the overall patenting activity. Thus, carbon pricing appears to be success-
ful in stimulating innovation in climate change mitigation technologies. These
results support the findings of Calel and Dechezleprêtre (2016), who employ a
quasi-experimental design exploiting inclusion criteria at the installations level
to estimate the ETS system’s causal impact on firms’ patenting, and also chime
well with the previously documented stock market response, which rebounds
and even turns positive in the longer run.

6. The heterogeneous effects of carbon pricing

Recently, there has been a big debate in Europe on energy poverty and the dis-
tributional effects of carbon pricing amid the European Commission’s plans of
extending the carbon market to buildings and transportation (European Comis-
sion, 2021). While the commission did propose a Social Climate Fund to cushion
the adverse effects on vulnerable households, several observers have argued that
the proposal does not do enough to ensure a fair and equitable transition.10

Against this backdrop, it is crucial to better understand the distributional im-
pact of the EU ETS. If certain groups are left behind, this could ultimately under-
mine the success of climate policy. To this end, I study the heterogeneous effects
of carbon pricing on households. This will help to get a better picture on how
carbon pricing affects economic inequality. Furthermore, looking into potential
heterogeneities in the consumption responses can help to better understand the

10See e.g. https://righttoenergy.org/2021/07/14/fit-for-55-not-fit-for-europes-
energy-poor/.
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transmission channels at work. There is reason to believe that there are impor-
tant heterogeneities at play. First, the direct effect through energy prices crucially
depends on the energy expenditure share, which is highly heterogeneous across
households. Second, the indirect effects will also be heterogeneous to the extent
that individual incomes respond differently to the change in aggregate expendi-
ture, for instance because of differences in the income composition or the sector
of employment. As poorer households tend to have a higher energy share and
their income tends to be more cyclical, we expect the impact to be regressive.

6.1. Household survey data

To be able to analyze the heterogeneous effects of carbon policy shocks on house-
holds, we need detailed micro data on consumption expenditure and income at
a regular frequency for a sample spanning the last two decades. Unfortunately,
such data does not exist for most European countries let alone at the EU level.
Therefore, I focus here on the UK which is one of the few countries that has such
data as part of the Living Costs and Food Survey (LCFS).11

The LCFS is the most significant survey on household spending in the UK and
provides high-quality, detailed information on expenditure, income, and house-
hold characteristics. The survey is fielded in annual waves with interviews being
conducted throughout the year and across the whole of the UK. I compile a re-
peated cross-section based on the last 20 waves, spanning the period 1999 to 2018.
Each wave contains around 6,000 households, generating over 120,000 observa-
tions in total. To compute measures of income and expenditure, I first express the
variables in per capita terms by dividing household variables by the number of
household members. In a next step, I deflate the variables by the (harmonized)
consumer price index to express them in real terms. For more information, see
Appendix A.3.

Ideally, we would like to observe how individual consumption expenditure
and income evolve over time. Unfortunately, the LCFS being a repeated cross-
section has no such panel dimension. To construct a pseudo-panel, it is common
to use a grouping estimator in the spirit of Browning, Deaton, and Irish (1985).

A natural dimension for grouping households is their income. However, as
the income may endogenously respond to the shock of interest, we cannot use the
current household income as the grouping variable. Luckily, the LCFS does not

11The UK was part of the EU ETS until the end of 2020. Over the sample of interest, the ag-
gregate effects in the UK are comparable to the ones documented at the EU level, see Figure B.6
in the Appendix. To further mitigate concerns about external validity, I show that the results for
other European countries such as Denmark and Spain are very similar, see Figure B.26.
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only collect information about current household income but also about normal
household income, which should by construction not be affected by temporary
shocks.12 Thus, I use the normal disposable household income to group house-
holds into three pseudo-cohorts: low-income, middle-income, and high-income
households.13 Following Cloyne and Surico (2017), I assign each household to a
quarter based on the date of the interview, and create the group status as the bot-
tom 25 percent of the normal disposable income distribution for low-income, the
middle 50 percent for middle-income, and the top 25 percent for high-income in
every quarter of a given year. The individual variables are then aggregated using
survey weights to ensure representativeness of the British population.

Table 1 presents some descriptive statistics, unconditional for all households
as well as by conditioning on the three income groups. We can see that weekly
total expenditure (excl. housing) and housing expenditure are both increasing in
income. While low-income households spend a large part of their budget on non-
durables, richer households spend more on services and durables. Importantly,
poorer households spend a significantly higher share of their expenditure on en-
ergy: the (average) energy share stands at close to 9.5 percent for low-income, just
above 7 percent for middle income, and around 5 percent for high-income house-
holds. Thus, to the extent that energy demand is inelastic, poorer households are
more exposed to increases in energy prices.

The different income groups turn out to be comparable in terms of their age.
This can be seen from the median age which is around 50 for all groups and also
from Figure B.8 in the Appendix, which shows that the empirical age distribution
is similar across all three income groups. As expected, high-income households
tend to be more educated, as can be seen from the larger share of households that
have completed post-compulsory education. Finally, higher-income households
tend to be homeowners, either by mortgage or outright, while among the low-
income there is a large share of social renters. Importantly, all these variables
are rather slow-moving and unlikely to confound potential heterogenities in the
household responses to carbon policy shocks, which exploit variation at a much
higher frequency (see Figure B.9 in the Appendix).

12While it may be affected by permanent shocks, this should not be too much of a concern for
our grouping strategy as the normal income variable is very slow moving. I have also verified
that normal income does not respond significantly to the carbon policy shock. In contrast, current
income falls significantly and persistently, as shown in Figure B.10 in the Appendix.

13In Appendix B.3, I use a selection of other proxies for the income level, including earnings,
expenditure, and an estimate for permanent income obtained from a Mincerian-type regression.
The results turn out to be robust to using these alternative measures of income for grouping.
Alternatively, I tried to group households by their energy share directly. The results turn out
again to be very similar, see Figure B.21. This suggests that the energy share is a good proxy for
the level of income, with poorer households having higher energy shares (see also Table B.4).
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Table 1: Descriptive statistics on households in the LCFS

Overall By income group

Low-income Middle-income High-income

Income and expenditure
Normal disposable income 236.3 112.6 236.3 466.6
Total expenditure (excl. housing) 157.3 91.6 155.4 269.6

Energy share 7.2 9.4 7.1 5.1
Non-durables (excl. energy) share 49.6 55.0 49.7 44.1
Services share 31.9 26.7 31.9 37.2
Durables share 11.3 8.9 11.3 13.6

Housing 32.0 18.8 31.1 58.0

Household characteristics
Age 51 46 54 49
Education (share with post-comp.) 33.5 25.0 29.1 51.0
Housing tenure

Social renters 20.9 47.1 17.4 3.7
Mortgagors 42.6 25.5 41.6 60.4
Outright owners 36.6 27.4 41.0 36.0

Notes: The table shows descriptive statistics on weekly per capita income and expen-
diture (in 2015 pounds), the breakdown of expenditure into energy, non-durables excl.
energy, services and durables (as a share of total expenditure) as well as a selection of
household characteristics, both over all households and by income group. For variables
in levels such as income, expenditure and age the median is shown while the shares are
computed based on the mean of the corresponding variable. Note that the expenditure
shares are expressed as a share of total expenditure excl. housing and thus services do not
include housing either, and semi-durables are subsumed under the non-durable category.
Age corresponds to the age of the household reference person and education is proxied
by whether a member of a household has completed a post-compulsory education.

6.2. Median effect and the response of inequality

We are now in a position to study how households’ expenditure and income re-
spond to carbon policy shocks.14 As a validating exercise, we first look at the
median household expenditure response and compare it to the consumption re-
sponse based on national statistics. As can be seen from the left panel of Figure 8,
the median response aligns quite well with the response from national statistics,
both in terms of shape and magnitude (see Figure 6).

14In the LCFS, households interviewed at time t are typically asked to report expenditure over
the previous three months (with the exception of non-durable consumption which refers to the
previous two weeks). To eliminate some of the noise inherent in survey data, I smooth the ex-
penditure and income measures with a backward-looking (current and previous three quarters)
moving average, as in Cloyne, Ferreira, and Surico (2020). Similar results are obtained when us-
ing the raw series instead (even though the responses become more jagged and imprecise) or by
using smooth local projections as proposed by Barnichon and Brownlees (2019), see Figure B.14
in the Appendix. To account for potential seasonal patterns I include a set of quarterly dummies
as controls, following again Cloyne, Ferreira, and Surico (2020).
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Figure 8: Response of household consumption expenditure

Notes: Impulse responses of total expenditure excluding housing. The left panel shows
the median response and the right panel shows the response of consumption inequality,
as measured by the Gini coefficient.

To investigate into potential heterogeneities, we also look at the Gini index for
household expenditure. The response is shown in the right panel of Figure 8. We
can see that the shock leads to a significant increase in inequality, especially at
longer horizons. While this result is interesting in itself, it does not tell us which
groups are more hardly affected than others.

6.3. Heterogeneity by household income

Having analyzed the aggregate effects as well as the effects on inequality, we
now look into the underlying heterogeneity by income group. Figure 9 shows
the responses of household expenditure and current income for the three income
groups we consider.

We can see that there is pervasive heterogeneity in the expenditure response
between income groups. Low-income households reduce their expenditure sig-
nificantly and persistently. In contrast, the expenditure response of higher-
income households is rather short-lived and only barely statistically significant.
Interestingly, the income responses turn out to be somewhat more homogeneous.
While low-income households experience the largest drop in income, higher-
income households also experience a non-negligible income decline, even though
it turns out to be less persistent.15 The finding that the expenditure of high-
income households does nevertheless not respond significantly points to the fact
that these households have more savings and liquid assets to smooth the tempo-
rary fall in their income. In contrast, the low-income households are hit twofold.

15While the income decline of the low- and middle-income households appears to be driven by
a fall in earnings, high-income households also experience a fall in their financial income, which
then however reverses and turns significantly positive – in line with the stock market response,
see Figure B.15 in the Appendix.

28



Figure 9: Household expenditure and income responses by income groups

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income for low-income (bottom 25 percent), middle-income (middle
50 percent) and high-income households (top 25 percent). The households are grouped
by total normal disposable income and the responses are computed based on the median
of the respective group.
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First, they spend a larger share of their budget on energy and are thus, as energy
expenditure is highly inelastic, adversely affected by the higher energy bill. Sec-
ond, they experience a larger fall in income, as they tend to work in sectors that
are more hardly affected by the carbon policy shock (see Section 6.4). At the same
time, they are more likely to be financially constrained and less able to cope with
the adverse effects on their income and budget.

At this stage, it is worth discussing a potential concern about grouping house-
holds concerning selection. The assignments into the income groups are not
random and some other characteristics may, potentially, be responsible for the
heterogeneous responses I document. To mitigate these concerns, I group the
households by a selection of other grouping variables, including age, education
and housing tenure. The results are shown in Figures B.16-B.18 in the Appendix.
While there is not much heterogeneity by age, less educated households tend
to respond more than better educated ones and social renters tend to respond
more than homeowners. However, none of the alternative grouping variables
can account for the patterns uncovered for income, suggesting that we are not
spuriously picking up differences in other household characteristics.

6.4. Direct versus indirect effects

While the expenditure responses are, as expected, more pronounced the higher
the energy share, the magnitudes are much larger than what can be accounted for
by the discretionary income effect alone. Assuming that energy demand is com-
pletely inelastic, the direct effect is bounded by the energy share of the respective
group.16 However, the peak response of low-income households is around one
– close to ten times the energy share of that group. This suggests that indirect,
general equilibrium effects via income and employment account for a large part
of the overall effect on household expenditure; a finding that is also supported
by the significant effects on unemployment documented in Section 5.2.

To shed more light on these indirect effects, I study how the income response
varies by the sector of employment using data from the UK Labour Force Survey
(LFS).17 I consider two dimensions to group sectors. First, I group sectors by

16Energy expenditure does indeed turn out to be pretty inelastic, especially for low-income
households, see Figures B.19-B.20 in the Appendix. While the energy share of higher-income
households does not respond significantly, the energy share of low-income households tends to
increase – reflecting the fact that their energy expenditure hardly changes while their total con-
sumption expenditure falls significantly.

17Unfortunately, the LCFS does not include any information on the sector of employment.
Therefore, I use data from the LFS which provides detailed information on employment sector
and income. For more information on the LFS, see Appendix A.3.
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their energy intensity to gauge the role of the conventional cost channel. Second,
I group sectors by how sensitive they are to changes in aggregate demand (see
Appendix B.3 for more information).

Table 2: Sectoral distribution of employment

Sectors Overall By income group

Low-income Middle-income High-income

Energy intensity
High 21.8 9.8 25.8 25.9
Lower 78.2 90.2 74.2 74.1

Demand sensitivity
High 30.6 49.1 27.3 18.1
Lower 69.4 50.9 72.7 81.9

Notes: The table depicts the sectoral employment distribution of households in the LFS,
both overall and by income group (where income is proxied by net pay in the main and
second job). I group sectors along two dimensions: their energy intensity and their de-
mand sensitivity. The energy-intensive sectors include agriculture, utilities, transporta-
tion, and manufacturing (SIC sections A–E and I). The demand-sensitive sectors include
construction, wholesale and retail trade, hospitality, and entertainment and recreation
(SIC sections F–H and O–Q).

Table 2 presents descriptive statistics on the sectoral distribution of house-
holds, both overall and by income group. We can see that only few low-income
households work in sectors with a high energy intensity such as utilities or man-
ufacturing. Thus, the sectors’ energy intensity is unlikely to explain the hetero-
geneous income responses that we observe. A more relevant dimension of het-
erogeneity appears to be the sectors’ demand sensitivity: low-income households
work disproportionally in sectors that tend to be more sensitive to aggregate de-
mand fluctuations, such as retail or hospitality, while a large majority of higher
income households work in less demand-sensitive sectors.

In a next step, I study how the median income across different sectors changes
after a carbon policy shock. Figure 10 presents the results. It turns out that the sec-
tors’ energy intensity does not appear to play a crucial role for the magnitude of
the income response. In fact, the response in sectors with a high energy intensity
is relatively comparable to the response in sectors with a lower energy intensity.18

In contrast, there is significant heterogeneity by the sectors’ demand-sensitivity:

18Note that I exclude utilities from the energy-intensive group, as there is reason to believe
that the utility sector behaves differently from other energy-intensive sectors. In fact, as shown
in Figure B.22 in the Appendix, the utility sector does not display a significant fall in incomes, in
line with the findings from Section 5.4.
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Figure 10: Income response by sector of employment

Notes: Impulse responses of income (pay from main and second job net of deduc-
tions and benefits) in different sectors, grouped by their energy-intensity and demand-
sensitivity. The response is computed based on the median income in the respective
group of sectors. The sector groups are described in detail in Table 2.

households working in demand-sensitive sectors experience the largest and most
significant fall in their income after a carbon policy shock while households in
less-demand sensitive sectors face a much more muted income response.

These results support the interpretation that carbon policy shocks mainly
transmit to the economy through the demand side, and not by affecting produc-
tion costs. While this may seem surprising, it is in line with previous evidence by
Kilian and Park (2009) on the transmission of energy price shocks. Importantly,
the results also help explain why low-income households display a stronger fall
in their income, as they disproportionally work in demand-sensitive sectors. In
response to a carbon policy shock, these sectors face a stronger decrease in de-
mand than other sectors and thus react by laying off employees and cutting com-
pensation.

To better disentangle these indirect effects from the direct effect via the energy
share, I look at the responses of low- and higher-income households condition-
ing on the most exposed high-energy share households and households with a
lower energy share. The responses are shown in Figure B.23 in the Appendix. A
few observations emerge from this exercise. First, we can see that low-income
households with a high energy share display a much stronger fall in their ex-
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penditure than households with a lower energy share in the same income group.
This differential response, however, cannot be solely accounted for by the energy
share heterogeneity as the income response also turns out to be more pronounced
for low-income households with a high energy share. The role of these indirect
effects via the decrease in household income can also be appreciated by compar-
ing the responses of low-income and higher-income households conditional on
a high energy share. Despite having a comparable energy share, higher-income
households lower their expenditure by much less, consistent with the fact that
they experience a smaller fall in their incomes. Interestingly, there is less hetero-
geneity in the expenditure response across income groups conditional on a lower
energy share, consistent with the fact that the income responses in this case are
also more similar. Overall, these results further illustrate the importance of indi-
rect effects working through income and employment.

Apart from the direct effect on households’ discretionary income, there may
also be other direct effects at play. For instance, households may postpone pur-
chases of certain durable goods in light of increased uncertainty or there may be
a shift in expenditure on durables that are complementary in use with energy
(see also Edelstein and Kilian, 2009). However, given the muted response of un-
certainty indicators (see Section 5.4) and the relatively small share of durable ex-
penditure, these channels do likely not play a dominant role in the transmission
of carbon policy shocks. In fact, as shown in Figures B.24-B.25 in the Appendix,
durable expenditures fall but the response turns out to be rather short-lived and
can thus not account for the persistent effects observed for total expenditure.

6.5. Policy implications

We have documented substantial heterogeneity in the response of households to
carbon policy shocks. The findings illustrate that the economic costs of carbon
pricing are not borne equally across society. It is the lower-income income house-
holds that are the most hardly affected, having to reduce their expenditures the
most, and that are driving the aggregate response. In fact, the overall pound
change in expenditure over the five-year period following a carbon policy shock
is −£329.9 for low-income, −£183.4 for middle-income, and −£162.2 for high-
income households.19 These heterogeneities are striking against the backdrop
that low-income households have much lower levels of expenditure to start with,
as shown in Table 1. Put differently, low-income households account for about 40

19To compute the overall pound change over the impulse horizon, I compute the present dis-
counted value of the impulse response, using the average real interest rate over the sample of in-
terest, and multiplying this value by the median quarterly expenditure for each group.
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percent of the aggregate effect of carbon pricing on consumption, despite the fact
that they only represent 25 percent of the population.

The results also highlight the importance of energy prices in the transmission
of carbon policy shocks through direct and indirect channels that disproportion-
ally affect lower-income households – the very households that also tend to be
financially constrained and have a higher marginal propensity to consume. My
findings suggest that fiscal policies targeted to the most affected households can
reduce the economic costs of climate change mitigation policies and ameliorate
the trade-off between reducing emissions and maintaining economic activity. To
the extent that energy demand is inelastic, which turns out to be particularly the
case for low-income households, this should not compromise the reductions in
emissions.

Such a policy could be implemented for instance by recycling some of the rev-
enues generated from auctioning allowances. While in the first two phases of
the ETS, the majority of allowances was freely allocated, auctioning became the
default in the third phase, generating substantial auction revenues. For the pe-
riod from 2012 to June 2020, the total revenues generated by the member states
of the EU ETS exceeded 57 billion euros (European Comission, 2020b). In the ETS
directive from 2008, the member states agreed that at least half of the auction
revenues should be used for climate and energy related purposes, both domestic
and internationally. Indeed, over the period 2013-2019, close to 80 percent of auc-
tion revenues were used for such purposes, with many countries using all of the
revenues for climate action. While this should help to further propel emission re-
ductions, my results indicate that by redistributing part of the auction revenues to
the most hardly affected groups in society, it is possible to offset the distributional
effects and reduce the economic costs of climate change mitigation policies.20

The above intuition is confirmed in a New Keynesian model with a climate
block in the spirit of Golosov et al. (2014), featuring heterogeneity in households’
energy expenditure shares, income incidence and marginal propensities to con-
sume (MPCs). Calibrated to match key empirical moments from macro and mi-
cro data, the model suggests that redistributing carbon revenues to high MPC
households can mitigate the effect on aggregate consumption by around 40 per-
cent while reducing inequality at the same time. The model also illustrates that

20The current ETS does not feature such a direct redistribution scheme, however, there are cer-
tain other, indirect solidarity measures in place, e.g. via the Cohesion Fund, the Just Transition
Fund and the European Social Fund Plus. Only in the recent ‘Fit for 55’ plan, the European Comis-
sion takes a step in the direction of redistributing revenues, proposing a new Social Climate Fund.
However, the proposed fund will be limited to the new emissions trading system for building and
transport fuels, and only includes an amount equivalent to 25 percent of the expected revenues.
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household heterogeneity plays a crucial role in the transmission of carbon policy
shocks and is key to reconcile the large effects observed in the data (see Appendix
D for a detailed description of the model and extended discussion of the results).

These results speak directly to the recent debate on carbon pricing and in-
equality in Europe. Another important argument for cushioning the distribu-
tional impact is that a successful transition to a low-carbon economy requires
public support. If certain groups feel left behind, this could undermine the suc-
cess of climate policy as the yellow vest movement in France, which started as
a demonstration against higher fuel taxes, has shown for instance (see also Knit-
tel, 2014). Indeed, in Appendix B.3 I show that carbon policy shocks lead to a
decrease in the public support of climate policy. While the support among low-
income households falls significantly and persistently, the response of higher-
income households is more short-lived and even turns positive at longer hori-
zons. These results suggest that compensating low-income households that are
more exposed to carbon pricing may indeed help to increase the public support
of climate change mitigation policies – consistent with recent evidence by Ander-
son, Marinescu, and Shor (2019).

7. Sensitivity analysis

In this section, I perform a number of robustness checks on the identification
strategy and the model specification used to isolate the carbon policy shock. The
main results of these checks are summarized below. More information as well as
the corresponding figures and tables can be found in Appendix B.4.21

Selection of relevant events. A crucial choice in the high-frequency event study
approach concerns the selection of relevant events. For the exclusion restriction
to be satisfied, the events should only release information about the supply of
emission allowances and not about other factors such as economic activity. To
this end, I have not included broader events such as the Paris agreement or other
COP meetings but limited the analysis to specific events in the European carbon
market. The most obvious candidates are events about the free allocation and
auctioning of emission allowances. I have also included events on the overall cap
in the carbon market as well as events about international credits.

Because the events concerning the cap tend to be broader in nature, I exclude
these events as a robustness check. As shown in Figure B.29, the results turn out

21I focus here on the external instrument VAR for the robustness checks. The results for the
internal instrument approach are available upon request.
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to be robust. I have also tried to exclude the events about international credits,
which affect the supply of allowances only indirectly, by changing the number of
credits from international projects that can be exchanged for allowances. From
Figure B.30, we can see that the results turn out to be very similar. By going
through all events in detail, I could also identify some events that are poten-
tially confounded, either because some other event happened on the same day
(more on this below) or because they could potentially also contain some infor-
mation about demand in the carbon market. Reassuringly, however, excluding
these events does not change the results materially (see Figure B.32). Finally, I
have verified that the identification strategy does not hinge upon extreme events.
Excluding the largest surprises (price change in excess of 30 percent) does not
change the results materially, even though the responses are less precisely esti-
mated (see Figure B.33).

Confounding news. Another important choice in high-frequency identification
concerns the size of the event window. As discussed in Section 3, there is a trade-
off between capturing the entire response to the policy news and background
noise, i.e. the threat of other news confounding the response. Common window
choices range from 30-minutes to multiple days. Unfortunately, the exact release
times are unavailable for the majority of the policy events considered, making it
infeasible to use an intraday window. Therefore, I use a daily window to compute
the policy surprises.

To mitigate concerns about other news confounding the carbon policy sur-
prise series, I employ an alternative identification strategy exploiting the het-
eroskedasticity in the data (Rigobon, 2003; Nakamura and Steinsson, 2018). The
idea is to clean out the background noise in the surprise series by compar-
ing movements in carbon prices during policy event windows to other equally
long and otherwise similar event windows that do not contain a regulatory up-
date event. In particular, I use the changes in carbon futures prices on the
same weekday and week in the months prior a given regulatory event. An
overview of announcement and control dates can be found in Table B.6 in the
Appendix. More details on the underlying assumptions and how to implement
the heteroskedasticity-based approach are provided in Appendix C.

Figure B.34 shows the carbon policy surprise series together with the control
series. We can see that the policy surprise series is over six times more volatile
than the control series. It is exactly this shift in variance that can be exploited for
identification, assuming that the shift is driven by the carbon policy shock. Fig-
ure B.35 shows the impulse responses estimated from this alternative approach.
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The results turn out to be consistent with the baseline results from the external in-
strument approach, even though the responses turn out to be a bit less precisely
estimated. These results suggest that the bias induced by background noise is
likely negligible in the present application.

Sample and specification choices. An important robustness check concerns the
estimation sample. Recall, that the baseline sample goes back to 1999, which is
longer than the instrument sample which only starts in 2005. The main moti-
vation for using the longer sample is to increase the precision of the estimates.
As a robustness check, I restrict the overall sample to the 2005-2018 period. The
responses are shown in Figure B.37. Overall, the results are very similar to the
ones using the longer sample. However, some responses turn out to be a bit less
stable, which could point to difficulties in estimating the model dynamics on the
relatively short sample.

Another interesting check concerns the sample for the carbon policy surprises.
Recall that the EU ETS was established in phases and the first phase was a pilot
phase. As a robustness test, I exclude the regulatory news from this first phase.
From Figure B.38, we can see that the point estimates turn out to be quite similar.
However, as probably had to be expected the responses are much less imprecisely
estimated. This illustrates nicely how the identification strategy leverages the fact
that establishing the carbon market was a learning-by-doing process where the
rules have been continuously updated.

I also perform a number of sensitivity checks on the specification of the model.
The baseline VAR includes 8 variables, which is relatively large, especially against
the backdrop of the short sample. As a robustness test, I use a 6-variable model,
excluding stock prices and the real exchange rate. As can be seen from Figure
B.39, the results from this smaller model turn out to be very similar to the larger
baseline model. The results also turn out to be robust to the lag order (Figures
B.41-B.42 show the responses using 3 or 9 lags) and the choice of deterministics
(Figure B.40 includes a linear trend). Finally, I also present results from a Bayesian
VAR model with 12 lags and using shrinkage priors. The results turn out to be
again very similar to the baseline VAR (see Figure B.43).

8. Conclusion

Fighting climate change is one of the greatest challenges of our time. While
it has proved to be very difficult to make progress at the global level, several
national carbon pricing policies have been put in place. However, still little is
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known about the effects of these policies on emissions and the economy. This
paper provides new evidence on the effects of carbon pricing from the largest
carbon market in the world, the EU ETS. I show that tightening the carbon pric-
ing regime leads to a persistent fall in emissions and a significant increase in
energy prices. The fall in emissions comes at the cost of temporarily lower eco-
nomic activity. The results point to a strong transmission mechanism working
through energy prices leading to lower consumption and investment. Impor-
tantly, these economic costs are not borne equally across society. Lower-income
households lower their consumption significantly and are driving the aggregate
response while richer households are hardly affected. Thus, re-distributing some
of the auction revenues to the most affected groups in society may be an effec-
tive way to reduce the economic costs of carbon pricing while at the same time
strengthening the public support of the policy.
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A. Data

A.1. Details on regulatory events

In this Appendix, I provide a detailed list of all the regulatory events used in the
paper. To collect the events, I relied on a number of different sources. After 2010,
most of the relevant news can be found on the European Commission Climate Ac-
tion news archive: https://ec.europa.eu/clima/news/news_archives_en. Be-
fore that, I used information from the official journal of the European Union:
https://eur-lex.europa.eu/homepage.html. Finally, the decisions on the NAPs
in the first two phases are taken from Mansanet-Bataller and Pardo (2009). Table
A.1 lists all the events.

Table A.1: Regulatory update events

Date Event description Type

1 25/05/2005 Italian phase I NAP approved Free alloc.
2 20/06/2005 Greek phase I NAP approved Free alloc.
3 23/11/2005 Court judgement on proposed amendment to NAP, UK vs Commission Free alloc.
4 22/12/2005 Further guidance on allocation plans for the 2008–2012 trading period Cap
5 22/02/2006 Final UK Phase I NAP approved Free alloc.
6 23/10/2006 Stavros Dimas delivered the signal to tighten the cap of phase II Cap
7 13/11/2006 Decision avoiding double counting of emission reductions for projects under the Kyoto Protocol Intl. credits
8 29/11/2006 Commission decision on the NAP of several member states Free alloc.
9 14/12/2006 Decision determining the respective emission levels of the community and each member state Cap
10 16/01/2007 Phase II NAPs of Belgium and the Netherlands approved Free alloc.
11 05/02/2007 Slovenia phase II NAP approved Free alloc.
12 26/02/2007 Spain phase II NAP approved Free alloc.
13 26/03/2007 Phase II NAPs of Poland, France and Czech Republic approved Free alloc.
14 02/04/2007 Austrian phase II NAP approved Free alloc.
15 16/04/2007 Hungarian phase II NAP approved Free alloc.
16 30/04/2007 Court order on German NAP, EnBW AG vs Commission Free alloc.
17 04/05/2007 Estonian phase II NAP approved Free alloc.
18 15/05/2007 Italian phase II NAP approved Free alloc.
19 07/11/2007 Court judgement on German NAP, Germany vs Commission Free alloc.
20 08/04/2008 Court order on German NAP, Saint-Gobain Glass GmbH vs Commission Free alloc.
21 23/04/2009 Directive 2009/29/EC amending Directive 2003/87/EC to improve and extend the EU ETS Cap
22 23/09/2009 Court judgement on NAP, Poland vs Commission Free alloc.
23 24/12/2009 Decision determining sectors and subsectors which have a significant risk of carbon leakage Free alloc.
24 19/04/2010 Commission accepts Polish NAP for 2008-2012 Free alloc.
25 09/07/2010 Commission takes first step toward determining cap on emission allowances for 2013 Cap
26 14/07/2010 Member states back Commission proposed rules for auctioning of allowances Auction
27 22/10/2010 Cap on emission allowances for 2013 adopted Cap
28 12/11/2010 Commission formally adopted the regulation on auctioning Auction
29 25/11/2010 Commission presents a proposal to restrict the use of credits from industrial gas projects Intl. credits
30 15/12/2010 Climate Change Committee supported the proposal on how to allocate emissions rights Free alloc.
31 21/01/2011 Member states voted to support the ban on the use of certain industrial gas credits Intl. credits
32 15/03/2011 Commission proposed that 120 million allowances to be auctioned in 2012 Auction
33 22/03/2011 Court judgement on NAP, Latvia vs Commission Free alloc.
34 29/03/2011 Decision on transitional free allocation of allowances to the power sector Free alloc.
35 27/04/2011 Decision 2011/278/EU on transitional Union-wide rules for harmonized free allocation of allowances Free alloc.
36 29/04/2011 Commission rejects Estonia’s revised NAP for 2008-2012 Free alloc.
37 07/06/2011 Commission adopts ban on the use of industrial gas credits Intl. credits
38 13/07/2011 Member states agree to auction 120 million phase III allowances in 2012 Auction
39 26/09/2011 Commission sets the rules for allocation of free emissions allowances to airlines Free alloc.
40 14/11/2011 Clarification on the use of international credits in the third trading phase Intl. credits
41 23/11/2011 Regulation 1210/2011 determining the volume of allowances to be auctioned prior to 2013 Auction
42 25/11/2011 Update on preparatory steps for auctioning of phase 3 allowances Auction
43 05/12/2011 Commission decision on revised Estonian NAP for 2008-2012 Free alloc.
44 29/03/2012 Court judgments on NAPs for Estonia and Poland Free alloc.
45 02/05/2012 Commission publishes guidelines for review of GHG inventories in view of setting national limits for 2013-20 Cap
46 23/05/2012 Commission clears temporary free allowances for power plants in Cyprus, Estonia and Lithuania Free alloc.
47 05/06/2012 Commission publishes guidelines on State aid measures in the context of the post-2012 trading scheme Free alloc.
48 06/07/2012 Commission clears temporary free allowances for power plants in Bulgaria, Czech Republic and Romania Free alloc.
49 13/07/2012 Commission rules on temporary free allowances for power plants in Poland Free alloc.
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Date Event description Type

50 25/07/2012 Commission proposed to backload certain allowances from 2013-2015 to the end of phase III Auction
51 12/11/2012 Commission submits amendment to back-load 900 million allowances to the years 2019-2020 Auction
52 14/11/2012 Commission presents options to reform the ETS to address growing supply-demand imbalance Cap
53 16/11/2012 Auctions for 2012 aviation allowances put on hold Auction
54 30/11/2012 Commission rules on temporary free allowances for power plants in Hungary Free alloc.
55 25/01/2013 Update on free allocation of allowances in 2013 Free alloc.
56 28/02/2013 Free allocation of 2013 aviation allowances postponed Free alloc.
57 25/03/2013 Auctions of aviation allowances not to resume before June Auction
58 16/04/2013 The European Parliament voted against the Commission’s back-loading proposal Auction
59 05/06/2013 Commission submits proposal for international credit entitlements for 2013 to 2020 Intl. credits
60 03/07/2013 The European Parliament voted for the carbon market back-loading proposal Auction
61 10/07/2013 Member states approve addition of sectors to the carbon leakage list for 2014 Free alloc.
62 30/07/2013 Update on industrial free allocation for phase III Free alloc.
63 05/09/2013 Commission finalized decision on industrial free allocation for phase three Free alloc.
64 26/09/2013 Update on number of aviation allowances to be auctioned in 2012 Auction
65 08/11/2013 Member states endorsed negotiations on the back-loading proposal Auction
66 21/11/2013 Commission submitted non-paper on back-loading to the EU Climate Change Committee Auction
67 10/12/2013 European Parliament voted for the back-loading proposal Auction
68 11/12/2013 Climate Change Committee makes progress on implementation of the back-loading propsal Auction
69 18/12/2013 Commission gives green light for a first set of member states to allocate allowances for calendar year 2013 Free alloc.
70 08/01/2014 Climate Change Committee agrees back-loading Auction
71 22/01/2014 Commission proposed to establish a market stability reserve for phase V Cap
72 26/02/2014 Commission gives green light for free allocation by all member states Free alloc.
73 27/02/2014 Back-loading: 2014 auction volume reduced by 400 million allowances Auction
74 13/03/2014 Commission approves first batch of international credit entitlement tables Intl. credits
75 28/03/2014 Commission approves second batch of international credit entitlement tables Intl. credits
76 04/04/2014 Update on approval of international credit entitlement tables Intl. credits
77 11/04/2014 Commission approves four more international credit entitlement tables Intl. credits
78 23/04/2014 Commission approves final international credit entitlement tables Intl. credits
79 02/05/2014 Commission published the number of international credits exchanged Intl. credits
80 05/05/2014 Commission submits proposed carbon leakage list for 2015-2019 Free alloc.
81 04/06/2014 Auctioning of aviation allowances to restart in September Auction
82 04/07/2014 Commission published the first update on the allocation of allowances from the New Entrants’ Reserve Free alloc.
83 09/07/2014 Climate Change Committee agrees proposed carbon leakage list for the period 2015-2019 Free alloc.
84 27/10/2014 Commission adopts the carbon leakage list for the period 2015-2019 Free alloc.
85 04/11/2014 Updated information on exchange and international credit use Intl. credits
86 04/05/2015 Updated information on exchange and international credit use Intl. credits
87 15/07/2015 Proposal to revise the EU emissions trading system for the period after 2020 Cap
88 23/07/2015 Commission publishes status update for New Entrants’ Reserve and allocation reductions Free alloc.
89 04/11/2015 Updated information on exchange and international credit use Intl. credits
90 15/01/2016 Commission publishes status update for New Entrants’ Reserve Free alloc.
91 28/04/2016 Court judgment on free allocation in the EU ETS for the period 2013-2020 Free alloc.
92 02/05/2016 Updated information on exchange and international credit use Intl. credits
93 23/06/2016 Following court judgement, commission to modify cross-sectoral correction factor for 2018-2020 Free alloc.
94 15/07/2016 Commission published a status update on the allocation of allowances from the New Entrants’ Reserve 2013-2020 Free alloc.
95 08/09/2016 Court judgment on free allocation in the EU ETS for the period 2013-2020 Free alloc.
96 04/11/2016 Updated information on exchange and international credit use Intl. credits
97 16/01/2017 Commission publishes status update for New Entrants’ Reserve Free alloc.
98 24/01/2017 Commission adopts Decision to implement Court ruling on the cross-sectoral correction factor Free alloc.
99 15/02/2017 European Parliament voted in support of the revision of the ETS Directive for the period after 2021 Cap
100 27/04/2017 Climate Change Committee approves technical changes to auction rules Auction
101 02/05/2017 Updated information on exchange and international credit use Intl. credits
102 12/05/2017 Commission publishes first surplus indicator for ETS Market Stability Reserve Auction
103 17/07/2017 Commission publishes status update for New Entrants’ Reserve Free alloc.
104 26/07/2017 Court judgment again confirms benchmarks for free allocation of ETS allowances for 2013-2020 Free alloc.
105 06/11/2017 Updated information on exchange and international credit use Intl. credits
106 15/01/2018 Commission publishes status update for New Entrants’ Reserve Free alloc.
107 04/05/2018 Updated information on exchange and international credit use Intl. credits
108 08/05/2018 Commission Notice on the preliminary carbon leakage list for phase IV (2021-2030) Free alloc.
109 15/05/2018 ETS Market Stability Reserve will start by reducing auction volume by almost 265 million allowances Auction
110 16/07/2018 Commission publishes status update for New Entrants’ Reserve Free alloc.
111 30/10/2018 Commission adopts amendment to ETS auctioning regulation Auction
112 06/11/2018 Updated information on exchange and international credit use Intl. credits
113 05/12/2018 Poland’s 2019 auctions to include some allowances not used for power sector modernization Auction

A.2. Macro data

In this Appendix, I provide details on the macroeconomic data used in the paper,
including information on the data source and coverage.
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Table A.2: Data description, sources, and coverage

Variable Description Source Sample

Instrument

LEXC.01 (PS) EUA futures front contract (settlement price) Datastream 22/04/2005-
31/12/2018

Baseline variables

EKESCPENF HICP energy (EA-19) Datastream 1999M1-2018M12
GHGTOTAL Total GHG emissions excluding LULUCF and includ-

ing international aviation (EU)
Eurostat/own cal-
culations

1999M1-2018M12

EKCPHARMF HICP all items (EA-19) Datastream 1999M1-2018M12
EKIPTOT.G Industrial production excl. construction (EA-19) Datastream 1999M1-2018M12
EMINTER3 3-month Euribor Datastream 1999M1-2018M12
EKESUNEMO Unemployment rate (EA-19) Datastream 1999M1-2018M12
DJSTO50 Euro STOXX 50 Datastream 1999M1-2018M12
RBXMBIS Broad REER (EA) FRED 1999M1-2018M12

Additional variables

Other carbon futures LEXC.0h (PS), for h in (2, 3, 4, 5) Datastream 22/04/2005-
31/12/2018

Sectoral stock prices Market [DJSTOXX], Utilities [S1ESU1E] Datastream 22/04/2005-
31/12/2018

BAMLHE00EHYIOAS ICE BofA euro high yield index option-adj. spread FRED 1999M1-2018M12
VSTOXX Euro STOXX 50 volatility stoxx.com 1999M1-2018M12
EKGDP...D Real GDP (EA-19) Datastream 1999M1-2018M12
EKESENMZD Final consumption expenditure (EA-19) Datastream 1999M1-2018M12
EKGFCF..D Gross fixed capital formation (EA-19) Datastream 1999M1-2018M12
EKNX Net exports [EKEXNGS.D-EKIMNGS.D] as a share of

GDP [EKGDP...D] (EA-19)
Datastream/own
calculations

1999M1-2018M12

CCPATENTS Share of climate change mitigation technologies
(CCMT) patents filed at EPO

Google Patents Pub-
lic Data/own calcu-
lations

2005Q1-2018Q4

The transformed series used in the baseline VAR are depicted in Figure A.1.
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Figure A.1: Transformed data series

A.3. Micro data

In this Appendix, I provide detailed information on the micro data used in Sec-
tion 6 of the paper. I use data from a selection of different surveys, which are
discussed in detail below.

A.3.1. LCFS

The living costs and food survey (LCFS) data can be obtained from the UK Data
Service. I use the waves from 1999-2001 of the Family Expenditure Survey, the
2001-2007 waves from the Expenditure and Food Survey and the 2008-2019 waves
from the LCFS, which superseded the previous two surveys. Note that within
this sample, the reporting frequency changed two times first from financial year
to calendar year and then back again to the financial year format. The waves
are adjusted to consistently reflect the calendar year prior to creating the pooled
cross-section. Most variables of interest are available in the derived household
datasets. The age at which full-time education was completed, as well as current
wages, is aggregated from the personal derived datasets.
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As the main measure of expenditure, I use total expenditure excluding hous-
ing (p550tp-p536tp). For current income, I use current total disposable income,
calculated by subtracting income taxes and NI contributions from the gross in-
come (p352p-p392p-p388p-p029hp). I group the households by their normal dis-
posable income (p389p). For earnings, I use wages net of taxes (aggregate p004p
to the household level, subtract current taxes and add back taxes on financial in-
come p068h). For financial income, I use p324p, which includes interest income,
dividends and rents. For age, I use the age of the household reference person,
p396p. Education is proxied by the highest age a person in the household has
completed a full-time education (a010 aggregated to the household level). The
housing tenure status is recorded in variable a121.

For energy expenditure, I use expenditure on fuel, light and power (p537t).
Constructing measures of non-durable, services and durable expenditure is not
trivial in the LCFS data, as the broader available expenditure categories do not al-
low a clean split, e.g. personal goods and services (p544t) is a mix of non-durable
goods and services while household goods (p542t) includes both non-durable
and durable goods. To construct clean measures of non-durables, services and
durables expenditure, I split these broader subcategories into non-durable, ser-
vices and durable parts by grouping the items in a particular subcategory accord-
ingly, following closely the COICOP guidelines. A further challenge in doing so
is that the code names for disaggregated expenditure items changed when the
FES became the EFS in 2001. In Table A.3, I detail how the non-durable, services
and durable expenditure measures are constructed. At the item level, I provide
both, the relevant codes in the FES and the EFS/LCFS. Note that semi-durables
are subsumed under non-durables, and services do not include housing.

Table A.3: Expenditure classification in LCFS

Category Subcategories Items

Non-durables Fuel, light power (p537t)
Food, alcoholic drinks, tobacco
(p538t, p539t, p540t)
Clothing and footwear (p541t)
Non-durable household goods
(subset of p542t)

LCFS codes: c52111t, c52112t, c53311t, c55214t, c56111t,
c56112t, c56121t, c56123t, c93114t, c93313t, c93411t, c95311t,
c95411t, cc1311t
FES codes: d070104t, d070105t, d070211t, d070209t, d070401t,
d070402t, d070302t, d070601t, d120304t, d070501t

Non-durable personal goods
(subset of p544t)

LCFS codes: c61112t, c61211t, c61311t, c61313t, cc1312t,
cc1313t, cc1314t, cc1315t, cc1316t, cc1317t, cc3211t, cc3222t,
cc3223t, cc3224t
FES codes: d090402t, d090102t, d090501t, d090101t, d090103t,
d090104t, d090105t, d090301t, d090202t, d090302t, d090303t
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Category Subcategories Items

Non-durable motoring expenditure
(subset of p545t)

LCFS codes: c72114t, c72211t, c72212t, c72213t
FES codes: d100405t, d100301t, d100302t, d100303t

Non-durable leisure goods
(subset of p547t)

LCFS codes: c91126t, c91411t, c91412t, c91413t, c91414t,
c93111t, c93113t, c93311t, c95111t, c95211t, c95212t
FES codes: d120114t, d120108t, d120110t, d120109t, d120401t,
d120113t, d070703t, d120303t, d120301t, d120302t

Miscellaneous non-durable goods
(subset of p549t)

LCFS codes: ck5511c, cc3221t
FES codes: d070801t, d140601c, d090701t

Services Household services (p543t)
Fares and other travel costs (p546t)
Leisure services (p548t)
Service part of household goods
(subset of p542t)

LCFS codes: c53312t, c53313t, c53314t, c93511t, cc5213t
FES codes: d070212t, d070213t

Personal services
(subset of p544t)

LCFS codes: c61111t, c61312t, c62111t, c62112t, c62113t,
c62114t, c62211t, c62212t, c62311t, c62321t, c62322t, c62331t,
c63111t, cc1111t
FES codes: d090401t, d090502t, d090403t, d090404t, d090601t

Service part of motoring expendi-
ture (subset of p545t)

LCFS codes: b187-b179, b188, b249, b250, b252, c72313t,
c72314t, c72411t, c72412t, c72413t, ck3112t, c72311c, c72312c,
cc5411c
FES codes: b187-b179, b188, b249, b250, b252, d100403t,
d100406t, d100407t, d100404t, d100408t, d100201c, d100204c,
d100401c

Leisure services
(subset of p547t)

LCFS codes: c91511t, c93112t, c94238t, c94239t, c94246t
FES codes: d120111t, d120112t

Miscellaneous services
(subset of p549t)

LCFS codes: b237, b238, ck5315c, ck5213t, ck5214t
FES codes: b237, b238, d140402, d140406c

Durables Durable household goods
(subset of p542t)

LCFS codes: b270, b271, c51111c, c51211c, c51212t, c51113t,
c51114t, c53111t, c53121t, c53122t, c53131t, c53132t, c53133t,
c53141t, c53151t, c53161t, c53171t, c53211t, c54111t, c54121t,
c54131t, c54132t, c55111t, c55112t, c55213t, c56122t, c93212t,
c93312t, c93412t, cc1211t
FES codes: b270, b271, d070101c, d070102c, d070103t,
d070304t, d070704t, d070203t, d070202t, d070204t, d070207t,
d070208t, d070201t, d070206t, d070303t, d070301t, d070205t,
d070701t, d070305t, d070306t, d070702t, d070602t

Durable personal goods
(subset of p544t)

LCFS codes: cc3111t
FES codes: d090201t

Durable motoring expenditure
(subset of p544t)

LCFS codes: b244, b2441, b245, b2451, b247, c31315t, c71112t,
c71122t, c71212t, c92114t, c92116t, c71111c, c71121c, c71211c,
c92113c, c92115c, c72111t, c72112t, c72113t, c91112t
FES codes: b244, b245, b247, d100105t, d100106t, d100107t,
d100101c, d100102c, d100104c, d100203t, d100202t, d100205t

Durable leisure goods
(subset of p547t)

LCFS codes: c91124t, c82111t, c82112t, c82113t, c91111t,
c91113t, c91121t, c91122t, c91123t, c91125t, c91211t, c91311t,
c92211t, c92221t, c93211t
FES codes: d120104t, d080202t, d080205t, d080207t, d120105t,
d120101t, d120102t, d120103t, d120115t, d120402t, d120106t,
d120107t, d120201t

Regarding the sample, I apply the following restrictions. I drop households
that have a household reference person younger than 18 or older than 90 years.
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Furthermore, I drop households with a negative normal disposable income. To
account for some (unrealistically) high or low values of consumption, for each
quarter and income group, I drop the top and bottom 1% of observations for total
expenditure.

A.3.2. LFS

To get information on the sector of employment, I use data from the UK Labour
Force Survey (LFS). The LFS studies the employment circumstances of the UK
population. It is the largest household study in the UK and provides the official
measures of employment and unemployment. Apart from detailed information
on employment, it also contains a wide range of related topics such as occupation,
training, hours of work and personal characteristics of household members aged
16 years and over. The data can be obtained from the UK Data Service. I use
the quarterly waves from 1999-2018 to construct a pooled cross-section. For the
employment sector, I use the variable indsect, which describes the industry sector
in the main job based on the SIC 2003 classification. To proxy income, I use the
net pay from the main and second job (netwk and netwk2).

A.3.3. BSA

To proxy public attitudes towards climate policy, I use data from the British social
attitudes (BSA) survey. The data can also be obtained from the UK Data Service. I
use the waves from 1999-2018 to construct a pooled cross-section. To construct the
income groups, I use the income quartiles that are provided from 2010 onwards
(hhincq). For the years before, I use the household income variable (hhincome)
to construct the quartiles. The survey contains many questions on the attitudes
towards climate change, the environment and climate/environmental policy, but
unfortunately most variables are not part of the main set of questions that are
asked in every year. One exception concerns a question about taxes for car owners
(cartaxhi), in particular it asks whether you agree with the following statement:
“For the sake of the environment, car users should pay higher taxes”, which was
fielded for all years up to 2017. Thus, I use the proportion of households agreeing
with this statement as a proxy for the public attitude towards climate policy.

B. Charts, tables and additional sensitivity checks

In this Appendix, I present additional tables and figures, and sensitivity checks
that are not featured in the main body of the paper.
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B.1. Diagnostics of the surprise series

As discussed in the paper, I perform a number of additional validity checks on the
surprise series. In particular, I investigate the autocorrelation and forecastability
of the surprise series as well as the relation to other shocks from the literature.

Figure B.1: The autocorrelation function of the carbon policy surprise series

Figure B.1 depicts the autocorrelation function. We can see that there is little
evidence that the series is serially correlated. I also perform a number of Granger
causality tests. Table B.1 shows that the series is not forecastable by past macroe-
conomic or financial variables. Finally, I look how the series correlates with other
shock series from the literature and find that it is not correlated with other struc-
tural shock measures, including oil, uncertainty, financial, fiscal and monetary
policy shocks (see Table B.2).
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Table B.1: Granger causality tests

Variable p-value

Instrument 0.9066
EUA price 0.7575
HICP energy 0.7551
GHG emissions 0.7993
HICP 0.8125
Industrial production 0.7540
Policy rate 0.9414
Unemployment rate 0.9310
Stock prices 0.9718
REER 0.9075
Joint 0.9997

Notes: The table shows the p-values of a series of Granger causality tests of the carbon
policy surprise series using a selection of macroeconomic and financial variables.

Table B.2: Correlation with other shock measures

Shock Source ρ p-value n Sample

Monthly measures
Global oil market
Oil supply Kilian (2008) (extended) -0.05 0.61 104 2005M05-2013M12

Kilian (2009) (updated) -0.02 0.76 164 2005M05-2018M12
Caldara, Cavallo, and Iacoviello (2019) -0.05 0.57 128 2005M05-2015M12
Baumeister and Hamilton (2019) -0.11 0.17 164 2005M05-2018M12
Känzig (2021) (updated) 0.02 0.83 164 2005M05-2018M12

Global demand Kilian (2009) (updated) 0.01 0.93 164 2005M05-2018M12
Baumeister and Hamilton (2019) -0.03 0.69 164 2005M05-2018M12

Oil-specific demand Kilian (2009) (updated) 0.05 0.55 164 2005M05-2018M12
Consumption demand Baumeister and Hamilton (2019) 0.05 0.51 164 2005M05-2018M12
Inventory demand Baumeister and Hamilton (2019) -0.03 0.68 164 2005M05-2018M12

Monetary policy
Monetary policy shock Jarociński and Karadi (2020) 0.02 0.80 140 2005M05-2016M12
Central bank info Jarociński and Karadi (2020) 0.03 0.75 140 2005M05-2016M12

Financial & uncertainty
Financial conditions BBB spread residual 0.06 0.43 164 2005M05-2018M12
Financial uncertainty VIX residual (Bloom, 2009) 0.10 0.22 164 2005M05-2018M12

VSTOXX residual 0.05 0.50 164 2005M05-2018M12
Policy uncertainty Global EPU (Baker, Bloom, and Davis, 2016) 0.03 0.71 164 2005M05-2018M12

Quarterly measures
Fiscal policy Euro area (Alloza, Burriel, and Pérez, 2019) 0.12 0.44 43 2005Q2-2015Q4

Germany 0.22 0.15 43 2005Q2-2015Q4
France -0.06 0.69 43 2005Q2-2015Q4
Italy 0.28 0.07 43 2005Q2-2015Q4
Spain 0.10 0.52 43 2005Q2-2015Q4

Notes: The table shows the correlation of the carbon policy surprise series with a wide
range of different shock measures from the literature, including global oil market shocks,
monetary policy, financial and uncertainty shocks. ρ is the Pearson correlation coefficient,
the p-value corresponds to the test whether the correlation is different from zero and n is
the sample size.
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B.2. More on aggregate effects

In this Appendix, I present some additional results pertaining to the analysis in
Section 5 in the paper.

B.2.1. Local projection-instrumental variable approach

As discussed in the main text, I rely on VAR techniques for estimation because
the sample is relatively short and VARs provide a parsimonious characterization
of the data. However, as a robustness check, I have also tried to estimate the im-
pulse responses using a local projections instrumental variable (LP-IV) approach
à la Jordà, Schularick, and Taylor (2015) and Ramey and Zubairy (2018). To fix
ideas, the dynamic causal effects, ψi

h, can be estimated from the following set of
regressions:

yi,t+h − yi,t−1 = βi
0 + ψi

h∆y1,t + βi′
hxt−1 + ξi,t,h, (1)

using zt as an instrument for ∆y1,t. Here, yi,t+h is the outcome variable of interest,
∆y1,t is the endogenous regressor, xt−1 is a vector of controls, ξi,t,h is a potentially
serially correlated error term, and h is the impulse response horizon. For infer-
ence, I follow again the lag-augmentation approach proposed by Montiel Olea
and Plagborg-Møller (2020).

As the impacts of carbon policy are potentially very persistent, we want to
look at the dynamic causal effects relatively far out. Given the short sample, this
is challenging in the LP-IV framework, which does not use the parametric VAR
restriction but estimates the effect by a distinct IV regression at each horizon h.
Consequently, the number of observations available for estimation decreases with
the impulse horizon. Against this background, I restrict the impulse horizon in
the LP-IV regressions to 20 months.

Figure B.2 compares the responses obtained from the LP-IV approach to the
ones from the internal instrument VAR. Recall that both approaches rely on the
same invertibility-robust identifying restrictions but use different estimation tech-
niques. We can see that the two approaches produce consistent results, especially
at horizons up to one year.1 At longer horizons the differences tend to be larger,
however, the responses are also much less precisely estimated.

1Note that this is despite the fact that we only control for 6 lags in both models.
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Figure B.2: Robustness with respect to estimation strategy

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid dark and red lines are the point estimates for
the internal instrument VAR and the LP-IV, respectively, and the shaded areas / dashed
lines are 68 and 90 percent confidence bands.
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B.2.2. Core versus headline HICP

In the paper, we have documented a significant and persistent increase in head-
line HICP. An important question that has also relevant implications for the con-
duct of monetary policy is how the shock transmits to core consumer prices. To
this end, I re-estimate the model substituting headline for core HICP. Figure B.3
presents the response for core HICP together with the HICP headline and energy
components from the baseline model. We can see that the response of core con-
sumer prices is more muted and much less precisely estimated. Importantly, the
response also turns out to be much less persistent, which may reflect the fact that
the fall in economic activity exerts downward pressure on prices other than en-
ergy, such as services. Reassuringly, all other responses from the model with core
HICP are very similar to the baseline case.

Figure B.3: Robustness with respect to estimation strategy

Notes: Impulse responses of the headline, energy and core HICP to a carbon policy shock.
The headline and energy indices are from the baseline model; the core response is from
the model featuring core instead of headline HICP. The solid line is the point estimate
and the dark and light shaded areas are 68 and 90 percent confidence bands, respectively.
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B.2.3. Model with carbon price

Recall, the baseline model does not include the carbon price as information on
prices are only available from 2005 when the carbon market was established. As
a robustness check, I estimate a model including the carbon price in lieu of GHG
emissions on the shorter sample starting from 2005. The results are depicted in
Figure B.4. We can see that the shock leads to a significant increase in the car-
bon price, in line with the interpretation of a shock tightening the carbon pricing
regime. Interestingly, however, the carbon price response turns out to be less
persistent than the energy price response. We can also back out the elasticity of
energy to carbon prices, which turns out to be around 20 percent at the peak.

Figure B.4: Model including carbon spot price

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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B.2.4. Variance decomposition

To better understand how carbon policy shocks have contributed to variations
in macroeconomic and financial variables, I perform a variance decomposition
in addition to the historical decomposition presented in the paper. I do so both
under the invertibility assumption maintained in the external instrument VAR as
well as under weaker assumptions in the context of a general SVMA model, as
proposed by Plagborg-Møller and Wolf (2020). In particular, I perform a standard
forecast error variance decomposition in the SVAR and compute forecast variance
ratios for the SVMA. The forecast variance ratio for variable i at horizon h is given
by

FVRi,h = 1− Var(yi,t+h|{yτ}−∞<τ≤t, {ε1,τ}t<τ<∞)

Var(yi,t+h|{yτ}−∞<τ≤t)
, (2)

and measures the reduction in the econometrician’s forecast variance that would
arise from being told the entire path of future realizations of the shock of interest.
Plagborg-Møller and Wolf (2020) show that this statistic is interval-identified un-
der the assumption that a valid instrument is available. Under the assumption of
recoverablity, the ratio is point-identified and given by the upper bound.

The results are shown in Table B.3. We can see that carbon policy shocks have
contributed meaningfully to historical variations in the variables of interest. Un-
der the invertibility assumption (Panel A), they account for about 40 percent of
the variations in energy prices and around 10 percent of the short-run variations
in emissions, which goes up to almost 40 percent at the 5 year horizon. Turning
to the macroeconomic variables, we can see that they explain a substantial part
of variations in the HICP, especially at shorter horizons, and a significant fraction
of the variations in industrial production and the unemployment rate at longer
horizons. The contributions to variations in the policy rate, stock prices and the
REER are lower but still non-negligible.

The forecast variance ratios in Panel B, which dispense from the assumption
of invertibility, paint a slightly more nuanced picture. In many cases, the point
estimates from the external instrument VAR lie within the estimated intervals.
The largest differences arise for the contributions to stock prices and the REER
which are estimated to be significantly lower when allowing for non-invertibility.
However, overall the two approaches produce comparable results.
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Table B.3: Variance decomposition

h HICP energy Emissions HICP IP Policy rate Unemp. rate Stock prices REER

Panel A: Forecast variance decomposition (assuming invertibility)
6 0.42 0.12 0.49 0.02 0.00 0.07 0.13 0.00

[0.20, 0.83] [0.02, 0.41] [0.26, 0.87] [0.00, 0.08] [0.00, 0.01] [0.01, 0.56] [0.03, 0.65] [0.00, 0.01]
12 0.34 0.25 0.35 0.15 0.03 0.23 0.15 0.00

[0.14, 0.73] [0.07, 0.70] [0.14, 0.69] [0.04, 0.48] [0.01, 0.18] [0.06, 0.84] [0.04, 0.66] [0.00, 0.01]
24 0.36 0.32 0.25 0.27 0.13 0.37 0.11 0.09

[0.15, 0.70] [0.11, 0.74] [0.08, 0.56] [0.09, 0.65] [0.03, 0.53] [0.12, 0.90] [0.03, 0.48] [0.03, 0.27]
60 0.38 0.39 0.17 0.22 0.11 0.38 0.12 0.25

[0.18, 0.71] [0.16, 0.72] [0.05, 0.45] [0.08, 0.55] [0.03, 0.41] [0.13, 0.82] [0.03, 0.45] [0.08, 0.56]

Panel B: Forecast variance ratio (robust to non-invertibility)
6 0.04, 0.31 0.02, 0.18 0.07, 0.49 0.02, 0.14 0.00, 0.02 0.05, 0.35 0.00, 0.03 0.00, 0.00

[0.02, 0.54] [0.01, 0.41] [0.04, 0.74] [0.01, 0.34] [0.00, 0.05] [0.02, 0.59] [0.00, 0.08] [0.00, 0.02]
12 0.05, 0.33 0.03, 0.18 0.07, 0.50 0.02, 0.16 0.00, 0.02 0.05, 0.36 0.01, 0.04 0.00, 0.01

[0.03, 0.53] [0.01, 0.36] [0.04, 0.73] [0.01, 0.33] [0.00, 0.05] [0.03, 0.60] [0.00, 0.08] [0.00, 0.02]
24 0.05, 0.32 0.03, 0.19 0.07, 0.50 0.02, 0.18 0.01, 0.08 0.08, 0.55 0.01, 0.04 0.00, 0.01

[0.02, 0.52] [0.01, 0.36] [0.04, 0.72] [0.01, 0.35] [0.01, 0.19] [0.04, 0.78] [0.00, 0.09] [0.00, 0.02]
60 0.05, 0.32 0.03, 0.19 0.07, 0.50 0.02, 0.18 0.01, 0.08 0.09, 0.55 0.01, 0.04 0.00, 0.01

[0.02, 0.52] [0.01, 0.35] [0.04, 0.72] [0.01, 0.35] [0.00, 0.18] [0.04, 0.78] [0.00, 0.09] [0.00, 0.02]

Notes: The table shows variance decomposition at horizons ranging from 6 months to
5 years. Panel A includes the forecast error variance decomposition from the external
instrument VAR with the point estimates and the 90% confidence interval in brackets.
Panel B shows the identified set for the forecast variance ratio together with the 90%
confidence interval in brackets.

B.2.5. Financial conditions and uncertainty

To better understand how the shock transmits to the economy, I have also looked
at the responses of indicators for financing conditions and financial uncertainty,
see Figure B.5. However, as can be seen from the responses these variables do not
appear to play a dominant role in the transmission of the carbon policy shock.

Figure B.5: Financial and uncertainty indicators
Notes: Impulse responses of financial conditions, as proxied by the BBB bond spread,
and the VSTOXX index as a measure of financial uncertainty.

B.2.6. Aggregate effects for the UK

Because of data availability, the household-level analysis is carried out for the
UK. For better comparison, I have verified that the aggregate effects on the UK,
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as measured by real GDP, consumption and investment, are comparable to the
EU level responses, see Figure B.6.

Figure B.6: Effect on UK GDP and components

Notes: Impulse responses of UK real GDP, consumption, investment and net exports
expressed as a share of GDP.

Finally, I have also estimated the baseline model using UK data for macroeco-
nomic block. The results are depicted in Figure B.7. We can see that the results
are comparable to the model with the EU block, even though the first stage turns
out to be weaker and the responses are less precisely estimated.
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Figure B.7: Model with block for UK economy

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively. I keep the carbon
block of the model at the EU level and replace the macro block with the corresponding
variables for the UK.

B.3. More on heterogeneous effects

In this Appendix, I present some additional results pertaining to Section 6 on the
heterogeneous effects of carbon pricing in the paper.

B.3.1. Further descriptive statistics

Figure B.8 compares the empirical distribution of age and total expenditure for
the three income groups. We can see that the groups are comparable in terms of
their age distribution. As expected, higher income groups tend to have higher
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expenditure but there is also more within group variation.

Figure B.8: Empirical distribution of age and total expenditure in the LCFS

Notes: The figure shows the empirical probability distribution of age and total expendi-
ture (excl. housing) for all three income groups. The distributions are estimated using an
Epanechnikov kernel.

Figure B.9 depicts the evolution of different households characteristics, in-
cluding age, education and housing tenure, over time. We can see that there are
some trends in these variables, however, they are rather slow-moving and thus
unlikely to confound potential heterogenities in the household responses to car-
bon policy shocks, which exploit variation at a much higher frequency.

Figure B.9: Evolution of household characteristics by income group

Notes: The figure shows the evolution of age, education, and housing tenure status over
time by income group.
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B.3.2. Robustness concerning grouping

To mitigate concerns about endogenous changes in the grouping variable, I look
at the responses of current and normal disposable income in Figure B.10. We
can see that both variables are rather slow-moving. Current income starts to fall
significantly after about a year. In contrast, the response of normal disposable
income is insignificant, at least at the 10 percent level, supporting its validity as a
grouping variable.

Figure B.10: Responses of current and normal income

Notes: Impulse responses of current disposable income and normal disposable income.

As a robustness check, I use a selection of other proxies for the income level,
including earnings, expenditure, and an estimate for permanent income obtained
from a Mincerian-type regression. For the latter, I use age, education, ethnicity,
sex, martial status, occupation, the source of the main household income, as well
as interactions between age and education, and between age and sex as predic-
tors, as in Alves et al. (2020). From Figures B.11-B.13, we can see that the results
turn out to be robust.
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Figure B.11: Expenditure and income responses by earnings groups

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income by earnings (incl. benefits) groups (bottom 25 percent, middle
50 percent, top 25 percent).

22



Figure B.12: Expenditure and income responses by expenditure groups

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income by groups of total expenditure as a proxy for permanent in-
come (bottom 25 percent, middle 50 percent, top 25 percent).
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Figure B.13: Expenditure and income responses by permanent income

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income by permanent income, estimated using a Mincerian-type re-
gression using age, education, ethnicity, sex, martial status, occupation, the source of the
main household income, as well as interactions between age and education, and between
age and sex (bottom 25 percent, middle 50 percent, top 25 percent).

B.3.3. Smoothing impulse responses

In the LCFS, households interviewed at time t are typically asked to report ex-
penditure over the previous three months (with the exception of non-durable
consumption which refers to the previous two weeks). To eliminate some of the
noise inherent in survey data, I smooth the expenditure and income measures
with a backward-looking (current and previous three quarters) moving average,
as in Cloyne, Ferreira, and Surico (2020). However, as shown in Figure B.14, the
results are very similar when using the raw series instead, even though the re-
sponses become more jagged and imprecise, or by using smooth local projections
as proposed by Barnichon and Brownlees (2019).
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Figure B.14: Sensitivity with respect to smoothing of responses

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income by income group, computed using simple backward-looking
moving average (baseline), smooth local projections (red dotted line), and unsmoothed
(blue dashed line).

B.3.4. Labor versus financial income

To better understand how the current income of households in different income
groups responds, I study the responses of labor earnings and financial income.
We can see that the earnings of low-income households fall more promptly and
significantly than for higher-income households. On the other hand, the financial
income of low- and middle-income households barely shows a response, reflect-
ing the fact that these households own very little financial assets. In contrast,
high-income households experience a significant fall in their financial income
in the short run, which however subsequently reverts (consistent with the stock
market response).
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Figure B.15: Responses of earnings and financial income

Notes: Impulse responses of labor earnings (wages from main occupation) and finan-
cial income (interest, dividend, rents) by income group (bottom 25 percent, middle 50
percent, top 25 percent).
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B.3.5. Selection

To mitigate concerns about selection, I use a number of different grouping vari-
ables, including age, education and housing tenure. From Figures B.16-B.18, we
can see that none of these alternative grouping variables can account for the pat-
terns uncovered for income, suggesting that we are not spuriously picking up
differences in other household characteristics. Similarly, the uncovered hetero-
geneity can also not be accounted for by occupation, sex and region. These results
are available from the author upon request.

Figure B.16: Household expenditure and income responses by age groups

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income for young (bottom 33 percent), middle-aged and older house-
holds (top 33 percent), based on the age of the household head.
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Figure B.17: Household expenditure and income responses by education status

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income for less educated, normally educated and well educated
households. Education status is proxied by the highest age a household member has
completed full-time education and the three groups are below 16 years, between 17 and
18 years (compulsory education), and 19 years or above (post-compulsory).

28



Figure B.18: Household expenditure and income responses by housing tenure

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income for social renters, mortgagors and outright owners.
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B.3.6. The role of the energy share

To further analyze the role of the energy share, I look at the responses of energy
expenditure – in absolute terms and as a share of total expenditure.2 From Figure
B.19, we can see that energy expenditure falls slightly on impact but then tends to
increase. However, the response is barely significant. This is also reflected in the
response of the energy share, which also has a tendency to increase, even though
the response is insignificant at the 10 percent level. Figure B.20 further presents
the energy expenditure responses by income group. We can see that energy ex-
penditure turns out to be pretty inelastic, especially for low-income households.
Higher-income households display a somewhat higher elasticity, however, their
energy share does not appear to change significantly after the shock.

Figure B.19: Responses of energy expenditure and the energy share

Notes: Impulse responses of energy expenditure (expenditure on fuel, light and power)
and the budget share of energy (expenditure on fuel, light and power as a share of total
expenditure).

2To compute real energy expenditure, I deflate nominal energy expenditure by the energy
component of the (harmonized) consumer price index.
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Figure B.20: Energy expenditure and energy share by income group

Notes: Impulse responses of energy expenditure and the budget share of energy by in-
come group (bottom 25 percent, middle 50 percent, top 25 percent).

A key difference between high- and low-income households concerns their
energy share. However, as we have argued, heterogeneity in the energy share
alone cannot account for the heterogeneous expenditure responses. To make the
role of the energy share in the transmission of carbon pricing more explicit, I al-
ternatively group households by their energy share, i.e. households with a high
energy share, households with a normal energy share, and households with a
low energy share. Table B.4 provides descriptive statistics on income, expendi-
ture and other characteristics by the households’ energy share. Note that the
heterogeneity in the energy share is now (by construction) much starker: close to
16 percent in the high-share group against only around 2 percent for low-share
households. Importantly, the high-, middle- and low-energy share groups turn
out to be comparable to the low-, middle- and high-income groups along many
other dimensions. In particular, the levels of expenditure and income turn out
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to be decreasing in the energy share. The largest differences are that high-energy
share households tend to be older and more likely to be homeowners than house-
holds in the low-income group.

Table B.4: Descriptive statistics on households in the LCFS

Overall By energy share

High-share Middle-share Low-share

Income and expenditure
Normal disposable income 236.3 180.5 245.2 288.5
Total expenditure (excl. housing) 157.3 95.8 165.4 244.4

Energy share 7.2 15.9 5.5 1.8
Non-durables (excl. energy) share 49.6 51.9 50.7 45.2
Services share 31.9 27.0 32.2 36.2
Durables share 11.3 5.2 11.6 16.8

Housing 32.0 26.3 32.5 38.2

Household characteristics
Age 51 62 50 45
Education (share with post-comp.) 33.5 17.8 35.3 45.7
Housing tenure

Social renters 20.9 34.2 15.9 17.7
Mortgagors 42.6 20.6 47.5 55.0
Outright owners 36.6 45.3 36.6 27.3

Notes: The table shows descriptive statistics on weekly per capita income and expen-
diture (in 2015 pounds), the breakdown of expenditure into energy, non-durables excl.
energy, services and durables as well as a selection of household characteristics, both
over all households and by energy share group. For variables in levels such as income,
expenditure and age the median is shown while the shares are computed based on the
mean of the corresponding variable. Note that the expenditure shares are expressed as a
share of total expenditure excl. housing and thus services do not include housing either,
and semi-durables are subsumed under the non-durable category. Age corresponds to
the age of the household reference person and education is proxied by whether a mem-
ber of a household has completed a post-compulsory education.

Figure B.21 shows the corresponding expenditure and income responses. We
can see that the magnitude of the expenditure response is clearly increasing in
the energy share: while the expenditure of households with a high energy share
falls significantly and persistently, households with a low energy share barely
alter their expenditure. However, there is also again significant heterogeneity in
the income responses, with the high energy share households experiencing the
strongest fall in their income. An explanation for this finding is that high energy
share households also tend to be poorer and thus have more cyclical income for
reasons dicussed in the paper. This makes it difficult to disentangle the direct
effects that operate through the energy share from indirect effects. Importantly,
the magnitudes of the expenditure responses are again much larger than what
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can be accounted for by the discretionary income effect alone.

Figure B.21: Household expenditure and income responses by energy share

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income for households with a high energy share (top 25 percent), a
typical energy share (middle 50 percent) and low energy share (bottom 25 percent). The
energy share is measured as expenditure on fuel, light and power, as a share of total ex-
penditure excluding housing and the responses are computed based on the median of
the respective group.

B.3.7. Direct versus indirect effects

To better understand the indirect effects, we have thus looked at the income re-
sponses by sector of employment using data from the LFS. In particular, I have
grouped sectors by their energy intensity and their demand sensitivity based on
information on SIC 2003 sections. A detailed description of all the four groups
can be found in Table B.5.

As explained in the main text, I have excluded utilities from the group of
energy-intensive sectors when looking at the income response, as the utility sec-
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Table B.5: Sectors by energy intensity and demand sensitivity

Group Sectors SIC sections

High energy intensity Agriculture, forestry, and fishing; mining and
quarrying; manufacturing; electricity, gas and
water supply (utilities); transport, storage and
communications

A-E, I

Lower energy intensity Construction; Wholesale and retail trade; Hotels
and restaurants; Financial intermediation; Real
estate, renting and business; Public administra-
tion and defense; Education; Health and social
work; Other community, social and personal ser-
vices

F-H, J-Q

High demand sensitivity Construction; Wholesale and retail trade; Hotels
and restaurants; Other community, social and
personal services

F-H, O-Q

Lower demand sensitivity Agriculture, forestry, and fishing; mining and
quarrying; manufacturing; electricity, gas and
water supply (utilities); transport, storage and
communications; Financial intermediation; Real
estate, renting and business; Public administra-
tion and defense; Education; Health and social
work

A-E, J-N

Notes: The sectors are grouped based on SIC 2003 sections. Note that the grouping is not
perfect, as the LFS only has information on groups of sections over the entire sample of
interest. The data on the energy intensity by sector from 1999-2018 is from the ONS.

tor may respond very differently from other energy-intensive sectors. Indeed,
as shown in Figure B.22, the households working in utilities do not experience a
significant change in their income, consistent the results from Section 5.4. This
further supports the notion that the utility sector can, at least in the short run,
profit from a more restrictive carbon pricing regime. In contrast, incomes in other
high-energy intensive sectors display a significant fall. However, the response
turns out to be more muted compared to demand-sensitive sectors. This may
come as a surprise against the backdrop that these sectors are more exposed be-
cause of their higher cost share of energy. However, note that these sectors also
tend to be less sensitive to changes demand, as they also produce more of es-
sential goods and services. This illustrates again that the shock predominantly
transmits through demand and not cost channels.
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Figure B.22: Income response in energy-intensive sectors

Notes: Impulse responses of median income in utilities and other energy-intensive sec-
tors.

To better understand the role of the energy share across income groups, I
look at the responses of low- and higher-income households conditioning on the
most exposed high-energy share households and households with a lower energy
share, as discussed in the paper. Note that these groups vary in size, as we con-
dition on households in a particular income group that also display a particular
energy share. The results are shown in Figure B.23.
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Panel A: Expenditure responses

Panel B: Income responses

Figure B.23: Responses by income and energy share groups

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income by income group (bottom 25 percent versus other 75 percent),
conditioning on households with a high (top 25 percent) or lower energy share (bottom
75 percent).
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To investigate into alternative direct channels, I look at the responses of the
non-durable, services and durable goods expenditure, first in the aggregate and
then by income group. From Figure B.24, we can see that all components fall in re-
sponse to a carbon policy shock. However, while the fall in services and durable
expenditure is more temporary, the response of non-durable expenditure turns
out to be very persistent. There is also substantial heterogeneity by income group,
in particular for non-durable goods and services. While low-income households
experience a significant and persistent fall, the responses of higher income house-
holds are much less pronounced and non-durable goods expenditure even tends
to increase at shorter horizons. For durables, low-income households also show
the strongest response, however, overall the responses tend to be a bit more ho-
mogeneous across income groups. Also note that the magnitude of the durable
response is larger, in line with the fact that durable expenditure tends to be more
volatile.

The results on durable expenditure support the notion that there may be other
direct channels at play such as the postponement of durable goods purchases be-
cause of increased uncertainty or a shift in expenditure on durables that are com-
plementary in use with energy – channels that tend to be more pronounced for
high-income households given their higher share of durables in total expendi-
ture. These channels may help explain the short-lived fall in total expenditure of
high-income households, which is absent from non-durable expenditure. How-
ever, given the relatively short-lived response, these channels cannot account for
the persistent effects observed for total expenditure.
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Figure B.24: Responses of non-durable, services, and durable expenditure

Notes: Impulse responses of the non-durable, services and durable components of to-
tal expenditure (excluding housing). Non-durable expenditure includes fuel, light and
power, food, alcoholic drinks, tobacco, clothing and footwear, and the non-durable parts
of household goods, personal goods and services, motoring expenditure, leisure goods
and miscellaneous expenditure. Services expenditure includes household services, fares
and other travel, leisure services, as well as the services part of personal goods and ser-
vices and miscellaneous expenditure. Durable expenditure includes the durable part of
household goods, personal goods and services, motoring expenditure and leisure goods.
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B.3.8. External validity

To mitigate concerns regarding external validity, I confirm the main results on the
heterogeneity in household expenditure by income group using data for Den-
mark and Spain. As can be seen from Figure B.26, the expenditure response
turns out to be significant and persistent for low-income households, while high-
income households are much less affected. These findings confirm the results for
the UK, supporting the external validity of the results.

Figure B.26: Expenditure by income groups for other European countries

Notes: Impulse responses of total expenditure for low-income, middle-income and high-
income households in Denmark and Spain. The Danish data are from the Danish house-
hold budget survey (HBS) available for 1999-2018, accessed via the StatBank Denmark
database, and expenditure is grouped by total annual income (under 250K DKK, 250-
999K DKK, 1000K DKK or over). The Spanish data are from the Spanish HBS available
for 2006-2018, accessed via the INE website, and expenditure is grouped by regular net
monthly household income (under 1000 euros, 1000-2499 euros, 2500 euros or over).
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B.3.9. Attitudes towards climate policy

As discussed in the paper, public opposition can be an impediment for climate
policy. Thus, it is interesting to see how carbon pricing affects the public attitude
towards climate policy. To analyze this question, I use data from the British social
attitudes (BSA) survey. The BSA is an annual survey that asks about the attitudes
of the British population towards a wide selection of topics, ranging from wel-
fare to genomic science. The BSA is used to inform the development of public
policy and is an important barometer of public attitudes. Some of the questions
in the BSA are repeated over time and thus, it is possible to analyze how certain
attitudes have changed over time.

To proxy the public attitude towards climate policy, I rely on a question from
the transportation module of the survey, which asks about the attitude towards
fuel taxes. In particular, the question asks whether the respondent agrees with
the following statement: “For the sake of the environment, car users should pay
higher taxes”. The BSA also includes information about the income of the re-
spondent, thus it is possible to analyze how the attitudes of different income
groups have evolved. Figure B.27 shows how the attitude towards fuel taxes has
changed among low- and higher-income households. We can see that the support
of climate policy has remained relatively stable at moderate levels for a large part
of the sample. In the early to middle 2010s, the support started increasing for
higher-income households. In contrast, the support of low-income households
has remained stable until the end of the sample.

Figure B.27: Public support for climate policy by income group

Notes: The figure shows the evolution of the attitude towards climate policy by income
group, as proxied by the share of households in the British social attitudes survey that
agree to the following statement: “For the sake of the environment, car users should pay
higher taxes”.

41



Figure B.28 shows how the attitude towards fuel taxes among income groups
changes after a restrictive carbon policy shock. We can see that carbon pricing
leads to a fall in the approval rate of environmentally-motivated tax policies. The
effect is very significant and persistent for low-income households, which are also
the households that are most hardly affected by carbon pricing in economic terms.
In contrast, the response of the high-income group is less precisely estimated and
even turns positive in the longer run.

Figure B.28: Effect on attitude towards climate policy by income group

Notes: Impulse responses of public attitude towards climate policy for low- and higher-
income groups. The public attitude towards climate policy is proxied by the share of
households in the British social attitudes survey that agree to the following statement:
“For the sake of the environment, car users should pay higher taxes”. Low-income corre-
spond to the bottom 25 percent and higher-income to the other 75 percent of the income
distribution.

B.4. Robustness

In this Appendix, I present the Figures and Tables corresponding to the robust-
ness analyses described in Section 7 of the paper.

B.4.1. Selection of events

The first check concerns the selection of the relevant events used for identifica-
tion. As the baseline, I have included all identified events that concern the sup-
ply of emission allowances. Figures B.29-B.32 present the results under varying
assumptions and show that the results turn out to be very robust to the selection
of events. Figure B.33 also shows that the identification strategy does not depend
on very large events, even though these events turn out to be important for the
precision of the estimates.
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Figure B.29: Excluding events regarding cap

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure B.30: Excluding events regarding international credits

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure B.31: Only using events on free allocation and auctioning

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure B.32: Excluding potentially confounded events

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure B.33: Excluding extreme events (price change in excess of 30 percent)

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.

B.4.2. Confounding news

An important robustness check concerns the treatment of background noise, i.e.
other news occuring on the event day that potentially confound the carbon policy
surprise series. Under the external and internal instrument approaches, I assume
that this background noise is not large enough to confound my results.

This assumption is supported by the observation that the variance of the sur-
prise series is much larger on event days than on a sample of controls days, which
are comparable to event days along many dimensions but do not include a car-
bon policy event (Table B.6 lists the event and control days used in the analysis.
For the controls days, I use days that are on the same weekday and in the same
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week in months prior a given regulatory event.).

Table B.6: Policy and control events

Month Policy Control Month Policy Control

2005M05 25/05/2005 2012M03 29/03/2012
2005M06 20/06/2005 2012M04 04/04/2012

25/04/2012
2005M07 27/07/2005 2012M05 02/05/2012

23/05/2012
2005M08 24/08/2005 2012M06 05/06/2012
2005M09 21/09/2005 2012M07 06/07/2012

13/07/2012
25/07/2012

2005M10 26/10/2005 2012M08 13/08/2012
15/08/2012
17/08/2012
31/08/2012

2005M11 23/11/2005 2012M09 10/09/2012
12/09/2012
14/09/2012
28/09/2012

2005M12 22/12/2005 2012M10 08/10/2012
10/10/2012
12/10/2012
26/10/2012

2006M01 25/01/2006 2012M11 12/11/2012
14/11/2012
16/11/2012
30/11/2012

2006M02 22/02/2006 2012M12 28/12/2012
2006M03 20/03/2006 2013M01 25/01/2013
2006M04 24/04/2006 2013M02 28/02/2013
2006M05 22/05/2006 2013M03 25/03/2013
2006M06 26/06/2006 2013M04 16/04/2013
2006M07 24/07/2006 2013M05 08/05/2013
2006M08 21/08/2006 2013M06 05/06/2013
2006M09 25/09/2006 2013M07 03/07/2013

10/07/2013
30/07/2013

2006M10 23/10/2006 2013M08 08/08/2013
29/08/2013

2006M11 13/11/2006
29/11/2006

2013M09 05/09/2013
26/09/2013

2006M12 14/12/2006 2013M10 11/10/2013
2007M01 16/01/2007 2013M11 08/11/2013

21/11/2013
2007M02 05/02/2007

26/02/2007
2013M12 10/12/2013

11/12/2013
18/12/2013

2007M03 26/03/2007 2014M01 08/01/2014
22/01/2014

2007M04 02/04/2007
16/04/2007
30/04/2007

2014M02 26/02/2014
27/02/2014

2007M05 04/05/2007
15/05/2007

2014M03 13/03/2014
28/03/2014
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Month Policy Control Month Policy Control

2007M06 06/06/2007 2014M04 04/04/2014
11/04/2014
23/04/2014

2007M07 11/07/2007 2014M05 02/05/2014
05/05/2014

2007M08 08/08/2007 2014M06 04/06/2014
2007M09 05/09/2007 2014M07 04/07/2014

09/07/2014
2007M10 10/10/2007 2014M08 25/08/2014
2007M11 07/11/2007 2014M09 29/09/2014
2007M12 11/12/2007 2014M10 27/10/2014
2008M01 08/01/2008 2014M11 04/11/2014
2008M02 05/02/2008 2014M12 01/12/2014
2008M03 11/03/2008 2015M01 05/01/2015
2008M04 08/04/2008 2015M02 02/02/2015
2008M05 22/05/2008 2015M03 02/03/2015
2008M06 26/06/2008 2015M04 06/04/2015
2008M07 24/07/2008 2015M05 04/05/2015
2008M08 21/08/2008 2015M06 17/06/2015

25/06/2015
2008M09 25/09/2008 2015M07 15/07/2015

23/07/2015
2008M10 23/10/2008 2015M08 05/08/2015
2008M11 20/11/2008 2015M09 02/09/2015
2008M12 25/12/2008 2015M10 07/10/2015
2009M01 22/01/2009 2015M11 04/11/2015
2009M02 19/02/2009 2015M12 18/12/2015
2009M03 26/03/2009 2016M01 15/01/2016
2009M04 23/04/2009 2016M02 25/02/2016
2009M05 20/05/2009 2016M03 31/03/2016
2009M06 24/06/2009 2016M04 28/04/2016
2009M07 22/07/2009 2016M05 02/05/2016
2009M08 26/08/2009 2016M06 23/06/2016
2009M09 23/09/2009 2016M07 15/07/2016
2009M10 22/10/2009 2016M08 11/08/2016
2009M11 26/11/2009 2016M09 08/09/2016
2009M12 24/12/2009 2016M10 07/10/2016
2010M01 18/01/2010 2016M11 04/11/2016
2010M02 15/02/2010 2016M12 19/12/2016

27/12/2016
2010M03 22/03/2010 2017M01 16/01/2017

24/01/2017
2010M04 19/04/2010 2017M02 15/02/2017
2010M05 14/05/2010

19/05/2010
2017M03 30/03/2017

2010M06 11/06/2010
16/06/2010

2017M04 27/04/2017

2010M07 09/07/2010
14/07/2010

2017M05 02/05/2017
12/05/2017

2010M08 20/08/2010 2017M06 19/06/2017
28/06/2017

2010M09 24/09/2010 2017M07 17/07/2017
26/07/2017

2010M10 22/10/2010 2017M08 07/08/2017
2010M11 12/11/2010

25/11/2010
2017M09 04/09/2017
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Month Policy Control Month Policy Control

2010M12 15/12/2010 2017M10 09/10/2017
2011M01 21/01/2011 2017M11 06/11/2017
2011M02 15/02/2011

22/02/2011
28/02/2011

2017M12 18/12/2017

2011M03 15/03/2011
22/03/2011
29/03/2011

2018M01 15/01/2018

2011M04 27/04/2011
29/04/2011

2018M02 02/02/2018
06/02/2018
13/02/2018

2011M05 10/05/2011 2018M03 02/03/2018
06/03/2018
13/03/2018

2011M06 07/06/2011 2018M04 06/04/2018
10/04/2018
17/04/2018

2011M07 13/07/2011 2018M05 04/05/2018
08/05/2018
15/05/2018

2011M08 29/08/2011 2018M06 18/06/2018
2011M09 26/09/2011 2018M07 16/07/2018
2011M10 17/10/2011

26/10/2011
28/10/2011

2018M08 28/08/2018

2011M11 14/11/2011
23/11/2011
25/11/2011

2018M09 25/09/2018

2011M12 05/12/2011 2018M10 30/10/2018
2012M01 26/01/2012 2018M11 06/11/2018
2012M02 23/02/2012 2018M12 05/12/2018

Figure B.34: The carbon policy and the control series

Notes: This figure shows the carbon policy surprise series together with the sur-
prise series constructed on a selection of control days that do not contain a regu-
latory announcement but are otherwise similar.

Figure B.34 displays the carbon policy surprise series together with the control
series over the sample of interest. We can see that the carbon policy surprise

50



series is significantly more volatile than the control series and a Brown-Forsythe
test for the equality of group variances confirms that this difference is statistically
significant.

Figure B.35: Heteroskedasticity-based identification

Notes: Impulse responses to a carbon policy shock identified using the
heteroskedasticity-based approach, normalized to increase the HICP energy by 1
percent on impact. The solid line is the point estimate and the dark and light shaded
areas are 68 and 90 percent confidence bands, respectively.

It is exactly this shift in variance that can be exploited for identification using a
heteroskedasticity-based approach in the spirit of Rigobon (2003), assuming that
the shift is driven by the carbon policy shock. Figure B.35 shows the results from
this alternative approach. The responses turn out to be very similar, both in terms
of shape and magnitudes, but turn out to be less precisely estimated. These re-
sults suggest that the bias induced by background noise is likely negligible in
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the present application. However, part of the statistical strength under the exter-
nal/internal instrument approach appears to come from the stronger identifying
assumptions.

B.4.3. Futures contracts

Figure B.36: Using different futures contracts for the instrument

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. Depicted are the point estimates using different futures
contracts to construct the instrument.

EUA futures are traded at different maturities. I focus on the quarterly contracts,
with expiry date in March, June, September and December. As a baseline, I use
the front contract, which is the contract with the closest expiry date and is usually
the most liquid. Figure B.36 presents the results based on contracts with longer
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maturities. The responses based on the second to the fourth contract are all very
similar. The largest difference emerge compared to the front contract, however,
most responses are qualitatively very similar. However, it should be noted that
using contracts further out weakens the first stage considerably. Overall, these
results support the focus on the front contract, to mitigate concerns about risk
premia.
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B.4.4. Sample and specification choices

Finally, I perform a number of sensitivity checks concerning the sample and
model specification. Figure B.37 shows the results based on the shorter sample
running from 2005, when the ETS was established, to 2018. The results turn out
to be very similar to the baseline case.

Figure B.37: Results using 2005-2018 sample

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.

Figure B.38 excludes events in phase one (2005-2007) in the construction of the
instruments. While the point estimates are similar, the responses are much less
precisely estimated, illustrating how the identification strategy leverages the fact
that establishing the carbon market was a learning-by-doing process where the
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rules have been continuously updated.

Figure B.38: Excluding phase one events

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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The baseline model includes 8 variables and 6 lags, which is relatively large for
a comparably short sample. Therefore, Figures B.39-B.43 analyze the robustness
with respect to the variables included and number of lags used. Alternatively,
I estimate the model using shrinkage priors.3 The results turn out to be robust
along all these dimensions.

Figure B.39: Responses from smaller VAR

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.

3In particular, I use a Minnesota prior with a tightness of 0.1 and a decay of 1.
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Figure B.40: VAR including linear trend

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure B.41: VAR with 3 lags

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure B.42: VAR with 9 lags

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure B.43: Bayesian VAR with shrinkage priors

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the posterior median and the dark and
light shaded areas are 68 and 90 percent HPD bands, respectively.
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C. Heteroskedasticity-based identification

As discussed in Section 7, we can also identify the structural impact vector under
weaker assumptions, allowing for the presence of other shocks contaminating the
instrument over the daily event window. Suppose that movements in the EUA
futures zt we observe in the data are governed by both carbon policy and other
shocks:

zt = ε1,t + ∑
j 6=1

ε j,t + vt,

where ε j,t are other shocks affecting carbon futures and vt ∼ iidN(0, σ2
v ) captures

measurement error such as microstructure noise. Because zt is also affected by
other shocks, it is no longer a valid external instrument. However, we can still
identify the structural impact vector by exploiting the heteroskedasticity in the
data.

The identifying assumption is that the variance of carbon policy shocks in-
creases at the time of regulatory update events while the variance of all other
shocks is unchanged. Define R1 as a sample of regulatory events in the EU ETS
and R2 as a sample of trading days that do not contain an regulatory event but
are comparable on other dimensions. R1 can be thought of as the treatment and
R2 as the control sample (see Appendix B.4 for more information and some de-
scriptive statistics of the instrument in the treatment and the control sample). The
identifying assumptions can then be written as follows

σ2
ε1,R1 > σ2

ε1,R2

σ2
ε j,R1 = σ2

ε j,R2, for j = 2, . . . , n. (3)

σ2
v,R1 = σ2

v,R2.

Under these assumptions, the structural impact vector is given by

s1 =
ER1[ztut]−ER2[ztut]

ER1[z2
t ]−ER2[z2

t ]
. (4)

As shown by Rigobon and Sack (2004), we can also obtain this estimator through
an IV approach, using z̃ = (z′R1, −z′R2)

′ as an instrument in a regression of the
reduced-form innovations on z = (z′R1, z′R2)

′.
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D. A climate DSGE model with heterogeneous agents

and sticky prices

D.1. Overview and results

In this appendix, I develop the theoretical model. The aim is to derive a frame-
work that can account for the empirical findings – both at the aggregate level and
along the cross section – and can be used for policy experiments. The model be-
longs to the dynamic stochastic general equilibrium (DSGE) class and augments
the climate-economy structure by Golosov et al. (2014) with nominal rigidities.
The model consists of four building blocks: households, firms, a government and
a climate block. The firm block is further divided into consumption good and en-
ergy producers. Importantly, there is heterogeneity in the household block with
respect to households’ energy shares, income incidence and marginal propensi-
ties to consume. A detailed derivation of the model can be found in Appendix
D.2.

D.1.1. Households

The household sector consists of a continuum of infinitely lived households, in-
dexed by i ∈ [0, 1]. Households are assumed to have identical preferences with
felicity function U(x, h), deriving utility from consumption x and disutility from
labor h. To retain tractability, I consider a model with limited heterogeneity. There
are two types of households: a share λ of households are hand-to-mouth H who
live paycheck by paycheck and consume all of their income and a share 1 − λ

savers S who choose their consumption intertemporally. Apart from the differ-
ence in their marginal propensities to consume (MPC), households differ along
two key dimensions: (i) the expenditure energy share and (ii) the income inci-
dence. In line with the data, we assume that hand-to-mouth households have a
higher energy share than savers and that their income is more elastic to changes
in aggregate income than savers’.

Labor supply decisions are relegated to a labor union, which sets wages ac-
cording to the following schedule:

wt = ϕhθ
t

(
λ

1
pH,t

Ux(xH,t, ht) + (1− λ)
1

pS,t
Ux(xS,t, ht)

)−1

, (5)

where wt is the real wage charged by the union, pH,t and pS,t are the relative
prices of the hand-to-mouth and the savers’ consumption baskets, respectively,
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and Ux(·) is the marginal utility of consumption. The labor market structure
equalizes labor income across households; thus all income heterogeneity in the
model will come from heterogeneity in financial income.4

Savers. Savers maximize their lifetime utility

Et

[
∞

∑
s=0

βsU(xS,t+s, ht+s)

]
,

choosing how much to consume xS,t, save bS,t+1 and invest iS,t. Their consump-
tion bundle xS,t is a composite of a non-energy good cS,t and energy eS,t:

xS,t =

(
a

1
εx
S,cc

εx−1
εx

S,t + a
1

εx
S,ee

εx−1
εx

S,t

) εx
εx−1

,

where aS,c and aS,e are distribution parameters satisfying aS,c + aS,e = 1, and εx is
the elasticity of substitution between non-energy and energy goods.

The demand functions for the consumption and energy good the are

cS,t = aS,c

(
1

pS,t

)−εx

xS,t (6)

eS,t = aS,e

(
pe,t

pS,t

)−εx

xS,t, (7)

respectively. Note that the consumption good is chosen to be the numeraire, i.e.

it’s price is one in real terms. The corresponding price index is pS,t =
(

aS,c + aS,e p1−εx
e,t

) 1
1−εx .

Each period, savers face the following flow budget constraint

pS,txS,t + iS,t + bS,t+1 = yS,t. (8)

The savers’ income is given by yS,t = wtht +
Rb

t−1
Πt

bS,t + (1− τk)rtkS,t +
(1−τd)dt

1−λ +

ωS,t, where pS,t is the price of the savers’ final consumption bundle,
Rb

t−1
Πt

is the
risk-free rate deflated by inflation, rt is the rental rate of capital, dt are dividends,
and ωS,t are transfers from the government.

Capital accumulation is given by

kS,t+1 = iS,t + (1− δ)kS,t. (9)

4This is a reduced-form way of capturing the income responses observed in the data. In the
model, this labor market structure helps to mitigate varying labor supply responses offsetting in-
come heterogeneity. Furthermore, it allows to introduce sticky wages relatively straightforwardly.
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Savers’ optimizing behavior is characterized by the following equations

λt = βEt[(1 + (1− τk)rt+1 − δ)λt+1] (10)

λt = βEt

[
Rb

t
Πt+1

λt+1

]
, (11)

where λt = Ux(xS,t, ht)/pS,t is the shadow value of wealth.

Hand-to-mouth. Hand-to-mouth households have no assets and thus consume
all of their income in every period:

pH,txH,t = yH,t. (12)

The income of the hand-to-mouth is given by yH,t = wthd
t + ωH,t, where ωH,t are

government transfers. The demand functions for non-energy goods and energy
are

cH,t = aH,c

(
1

pS,t

)−εx

xH,t (13)

eH,t = aH,e

(
pe,t

pS,t

)−εx

xH,t, (14)

with the associated price pH,t =
(

aH,c + aH,e p1−εx
e,t

) 1
1−εx .

D.1.2. Firms

The firm block of the model consists of two sectors: energy and non-energy pro-
ducers. Importantly, non-energy firms also use energy as an intermediate input
to produce the non-energy good. Further, we assume that non-energy firms face
some costs in adjusting their prices while the energy sector does not face any
price rigidity while energy producers do not, in line with the empirical evidence
(Dhyne et al., 2006; Alvarez et al., 2006).

To simplify matters, we split the non-energy goods sectors into two subsec-
tors: a representative competitive final goods firm which aggregates intermedi-
ate goods according to a CES technology and a continuum of intermediate goods
producers that produce different varieties using labor as an input. To the extent
to which the intermediate goods are imperfect substitutes, there is a downward-
sloping demand for each intermediate variety, giving the intermediate producers
some pricing power. However, importantly, intermediate goods producers can-
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not freely adjust prices. Nominal price rigidities are modeled according to Calvo
(1983) mechanism. In each period, a firm faces a constant probability 1− θp of
being able to reoptimize the nominal wage.

Non-energy firms. The final non-energy good is produced by a perfectly com-
petitive firm, combining a continuum of intermediate inputs yt(i) according to

the following standard CES production function: yd,t =

(∫ 1
0 yt(i)

εp−1
εp di

) εp
εp−1

,

with εp > 1. Taking prices as given, the final good producer chooses interme-
diate good quantities yt(i) to maximize profits, resulting in the usual demand

schedule yt(i) =
(

Pt(i)
Pt

)−ε
yd,t. From the zero-profit condition, we obtain the ag-

gregate price level Pt =
(∫ 1

0 Pt(i)1−εp dj
) 1

1−εp .
Intermediate inputs are produced by a continuum of monopolistic firms in-

dexed by i ∈ [0, 1] according to the following constant returns to scale technology,
using capital kt(i), energy ey,t(i), and labor hy,t(i) as inputs

yt(i) = e−γst atkt(i)αey,t(i)νhy,t(i)1−α−ν, (15)

where at is TFP, and st is the atmospheric carbon concentration. Note that there
is a feedback loop between climate and the economy. Higher economic activity
increases carbon emissions via higher energy use, which in turn increases the car-
bon concentration (or equivalently the total stock of emissions). A higher carbon
concentration will have economic damages in turn (e.g. via weather events etc.),
which reduce output. We model this by a damage function term in the firms’ pro-
duction function. The damage function is given by an exponential function (as in
Golosov et al., 2014). The parameter γ can be used to scale the damage function.

Intermediate goods producers maximize profits, taking the demand of their
variety into account. Importantly, intermediate goods producers cannot freely
adjust prices. As in Calvo (1983), in each period they face a constant probability
of 1− θp of being able to reoptimize their price.

The cost-minimization problem gives rise to the standard factor demands

rt = αmct
yt

kt

pe,t = νmct
yt

ey,t
(16)

wt = (1− α− ν)mct
yt

hy,t
,

which are common across firms. Here, mct are real marginal costs.
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When setting prices, intermediate goods producers take into account that the
choice today might affect not only current but also future profits. The optimality
condition is given by

Et

∞

∑
k=0

(βθp)
kλt+kyd,t+kPεp−1

t+k

(
Pt(i)−Mp Pt+kmct+k

)
= 0, (17)

where Mp =
εp

εp−1 is the steady-state markup and λt is the shadow value of
wealth for a saver. In log-linear terms, this gives rise to the standard Phillips
curve π̂t = κm̂ct + βEtπ̂t+1, where κ =

(1−θp)(1−θpβ)
θp

is the slope of the curve.

Finally, monopoly profits are given by dt =
∫ 1

0 [
Pt(i)

Pt
yt(i)−mctyt(i)]di.

Energy producers. As in Golosov et al. (2014), the energy firm produces energy
using labor according to the following technology

et = ae,the,t. (18)

We assume that there is only a single source of energy (e.g. coal) that is available
in (approx.) infinite supply. Note that we measure energy in terms of carbon
content (carbon amount emitted). Energy firms are subject to a carbon tax. For
convenience we model it as a sales tax τt, however, we can equally model it as a
unit tax (see also the discussion in Golosov et al., 2014).

Optimizing behavior is characterized by the following equation

wt = (1− τt)pe,t
et

he,t
. (19)

D.1.3. Climate block

Following Golosov et al. (2014), I model the current level of atmospheric carbon
concentration as a function of current and past emissions:

st =
∞

∑
s=0

(1− ds)et−s,

where 1− ds = (1− ϕL)ϕ0(1− ϕ)s. Here, 1− ϕ0 is the share of remaining emis-
sions exiting the atmosphere immediately while ϕ0 is the remaining share of
emissions that decay over time at a geometric rate 1− ϕ. We can write this in
recursive form as

st = (1− ϕ)st−1 + ϕ0et. (20)
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D.1.4. Fiscal and monetary policy

The government runs a balanced budget in every period, i.e. all transfers are
financed by tax revenues. We consider the following transfer policy

λωH,t = τddt + τkrK
t kt + µτt pe,tet (21)

(1− λ)ωS,t = (1− µ)τt pe,tet (22)

The distribution of carbon tax revenues are governed by parameter µ. As the
baseline, we assume that all carbon revenues are obtained by the savers, i.e. µ =

0. Later, we will experiment with alternative transfer policies.5

Carbon taxes τt are set according to the following rule:

τt = (1− ρτ)τ + ρττt−1 + ετ,t. (23)

Finally, we assume that there is a monetary authority that conducts monetary
policy according to the following simple Taylor rule

Rb
t

Rb =

(
Πt

Π

)φπ

eεmp,t . (24)

D.1.5. Aggregation and market clearing

Because capital is only held by S, we have that (1−λ)kS,t = kt and (1−λ)iS,t = it.
Because bonds are in zero net supply, we have bt = (1− λ)bS,t = 0.

Aggregate total, non-energy, and energy consumption are given by xt = λxH,t +

(1− λ)xS,t, ct = λcH,t + (1− λ)cS,t, and ec,t = λeH,t + (1− λ)eS,t, respectively.
Labor market clearing requires ht = hy,t + he,t. The energy market clears if
et = ec,t + ey,t.

Aggregate production is given by

yt =
∫ 1

0
yt(i)di = e−γst atkα

t eν
y,th

1−α−ν
y,t = ∆tyd,t, (25)

where ∆t =
∫ 1

0

(
Pt(i)

Pt

)−εp
di is a price dispersion term, generating a wedge be-

tween aggregate output and aggregate demand.
Finally, goods market clearing requires that

ct + it = yd,t. (26)

5Furthermore, we assume that τd = τk = 0. However, the tax scheme can be used to equalize
incomes if τd = τk = µ = λ.
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D.1.6. Calibration and functional forms

The felicity function is assumed to be

U(xi,t, ht) =
x1−σ

i,t − 1

1− σ
− ψ

h1+θ
t

1 + θ
,

for i ∈ {H, S}. This function belongs to the commonly used constant elasticity
class, where 1/σ is the intertemporal elasticity of substitution and 1/θ is the labor
supply elasticity.

We calibrate the model as follows. The time period is a quarter. The discount
factor β takes the standard value 0.99, which implies an annualized steady-state
interest rate of 4 percent. The intertemporal elasticity of substitution 1/σ is set to
2.6 I set the share of hand-to-mouth λ to 25 percent, corresponding to the low-
income threshold used in the LCFS. Such a share is also in line with the estimates
of hand-to-mouth households in Kaplan, Weidner, and Violante (2014). The dis-
tribution parameters aH,e and aS,e are calibrated to match the energy expenditure
shares of 9.5 percent for the hand-to-mouth and 6.5 percent for the savers as ob-
served in the LCFS. The elasticity of substitution between energy and non-energy
goods εx is set to a relatively low value of 0.3. This corresponds approximately to
the impact elasticity estimated in the LCFS and is in line with the insignificant en-
ergy share response. The labor supply elasticity 1/θ is set to 4. While this value is
at the upper range of the values commonly used in the literature, a relatively high
labor supply elasticity helps to generate income responses that are consistent in
magnitude with the responses observed in the data. The labor weight in the util-
ity function, ϕ is calibrated such that steady-state hours worked h are normalized
to one.

Turning to the production side, I set the depreciation rate δ to 0.025, imply-
ing an annual depreciation on capital of 10 percent. I set α to 0.275, which im-
plies a standard steady-state capital share (rk/y) of 70 percent (see e.g. Smets and
Wouters, 2003). Using data on non-household energy consumption and energy
prices in the EU, I estimate a energy share (peey/y) of around 7 percent. This
is slightly higher than the energy share in the US, as estimated for instance by
Hassler, Krusell, and Olovsson (2012), and implies a value of ν = 0.085. The elas-
ticity of substitution between non-energy varieties is assumed to be 6, which is a
standard value and implies a steady-state markup of 20 percent, consistent with
the evidence in Christopoulou and Vermeulen (2012). The Calvo parameter θp is

6This is value is at the upper range of the values commonly used in the literature, however,
the results are robust to using the more standard unitary elasticity.
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set to 0.825, which implies an average price duration of 5-6 quarters, in line with
the empirical estimates in Alvarez et al. (2006). These parameter choices imply a
relatively flat Phillips curve with a slope of 0.04.

For the climate block, I rely on the values in Golosov et al. (2014). I abstract
from uncertainty about the damage parameter and use the deterministic, long-
run value from Golosov et al. (2014). Note, however, that carbon emissions in my
model are in arbitrary units. Thus, following Heutel (2012) I scale the damage pa-
rameter to make the increase in output damages from doubling the steady-state
carbon stock consistent with the projected increase in damages from doubling
CO2 levels in 2005. Turning to the carbon cycle, note that the excess carbon has a
half-life of about 300 years (Archer, 2005). This implies a value of 1− ϕ = 0.9994.7

Furthermore, according to the 2007 IPCC reports, about half of the CO2 pulse
to the atmosphere is removed after a time scale of 30 years. This implies that
ϕ0 = 0.5

(1−ϕ)120 = 0.5359.
Turning to fiscal and monetary policy, I compute the steady-state carbon tax as

the implied tax rate implied by the average EUA price which is around 3.2 percent
(the average real EUA price as a share of gross electricity prices in emission units).
The persistence of the tax shock is set to 0.85, which implies that the shock is
close to being fully reabsorbed after about 20 quarters, which is consistent with
the shock dynamics observed in the external instruments VAR. Finally, the Taylor
rule coefficient on inflation is set to 1.05. This value is motivated by the absent
reaction of monetary policy to carbon policy shocks observed in the data, and
also confirms well with the anecdotal evidence in Konradt and di Mauro (2021).8

All other taxes are assumed to be zero in the baseline case, later we will use
them to equalize the income incidence. Furthermore, we assume that all carbon
tax revenues accrue to the savers, µ = 0, motivated by the fact that there is no
redistribution scheme in the current EU ETS in place. The calibration is summa-
rized in Table D.1.

7From the carbon cycle, we have Etst+h = (1− ϕ)hst = 0.5st. Thus, we impose (1− ϕ)1200 =
0.5 to get ϕ.

8A lower Taylor rule coefficient also ensures the model to have a determinate solution. Condi-
tional on the other parameter values used, a Taylor rule coefficient above 1.1 will cause the model
to be indeterminate.
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Table D.1: Calibration

Parameter Description Value Target/Source

β Discount factor 0.99 Smets and Wouters (2003)
1/σ Intertemporal elasticity of substi-

tution
2 Gruber (2013)

λ Share of hand-to-mouth 0.25 Share of low-income households,
LCFS

aH,e Distribution parameter H 0.103 Energy share of 9.5%, LCFS
aS,e Distribution parameter S 0.071 Energy share of 6.5%, LCFS
εx Elasticity of substitution

energy/non-energy
0.3 Empirical estimate, LCFS

1/θ Labor supply elasticity 4 Empirical income responses,
LCFS

ϕ Labor utility weight 0.799 Steady-state hours normalized to
1

δ Depreciation rate 0.025 Smets and Wouters (2003)
α Capital returns-to-scale 0.275 Steady-state capital share of 30%;

Smets and Wouters (2003)
ν Energy returns-to-scale 0.085 Steady-state energy share of 7%;

Eurostat
εp Price elasticity 6 Steady-state markup of 20%;

Christopoulou and Vermeulen
(2012)

θp Calvo parameter 0.825 Average price duration of 5-6
quarters; Alvarez et al. (2006)

γ Climate damage parameter 5.3 ∗ 10−5 Golosov et al. (2014)
ϕ0 Emissions staying in atmosphere 0.5359 Golosov et al. (2014)

1− ϕ Emissions decay parameter 0.9994 Golosov et al. (2014)
φπ Taylor rule coefficient 1.05 VAR evidence/determinacy
τ Steady-state carbon tax 0.039 Implied tax rate from average

EUA price
ρτ Persistence carbon tax shock 0.85 Mean-reversion of approx. 20

quarters

D.1.7. Main results

We will now study how a carbon policy shock affects the economy. As in the
empirics, I will normalize the shock such that it increases the energy price pe,t by
one percent on impact. As mentioned above, I assume that all carbon revenues
go to the savers as the baseline. Alternatively, I will consider the case in which all
revenues are redistributed to the hand-to-mouth.
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Figure D.1: Baseline responses

Figure D.1 displays the consumption and income responses, both in the ag-
gregate and by household group. We can see that a carbon policy shock leads
to a significant fall in consumption and income and the magnitudes of the peak
responses are in the same ballpark as in the empirical evidence.9 Importantly, we
can see that the hand-to-mouth play a crucial role in the transmission of carbon
policy. They experience a much stronger income response, which in combina-
tion with the higher energy share leads to a pronounced fall in their expenditure,
with a peak response of around -1 percent. In contrast, the savers’ response is
much more muted. Finally, the shock also leads to a significant fall in energy
use/emissions.

Redistributing carbon tax revenues alters the transmission of the shock sub-

9The model is, however, by construction not able to match the hump shape of the responses. To
this end, additional model features would be needed such as habit persistence, adjustment costs
or rational inattention. To retain tractability, I have deliberately abstracted from these features.
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stantially. Both aggregate consumption and income fall by substantially less. The
income response of hand-to-mouth turns positive and allows the hand-to-mouth
to increase their expenditure. The saver’s income and expenditure responses are
slightly more pronounced but the positive response of hand-to-mouth outweighs
these effects such that aggregate consumption response drops from -0.3 to -0.2 on
impact. Importantly, the response of emissions changes by much less, supporting
the interpretation that the effects of carbon pricing can be mitigated by targeted
fiscal policies without compromising emission reductions.10

As illustrated in Figure D.2, the heterogeneity is crucial in getting the em-
pirical magnitudes of the consumption responses. Without the heterogeneity in
MPCs, energy shares and income incidence, it is not possible to get the sizeable
responses observed in the data without implausibly high firm and household en-
ergy shares.

Figure D.2: Heterogeneous versus representative agent

Finally, Figure D.3 illustrates the importance of the direct effects via energy

10Note that it is theoretically possible for the negative effects on the savers, which decrease
investment and thus the capital stock and future consumption, to outweigh the positive effect
on the hand-to-mouth. In this case, redistributing the tax revenues to the hand-to-mouth would
make the aggregate consumption response more pronounced. However, in the parameter region
that can deliver empirically plausible income and expenditure responses, redistribution turns out
to be robustly beneficial.
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shares and the indirect effects through the income incidence. We can see that the
heterogeneity in energy share can only account for a limited part of the aggregate
consumption response, as the model with unequal incidence is already very close
to the baseline with heterogeneous energy shares and income incidence.

Figure D.3: Decomposition of direct and indirect effects
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D.2. Model derivations

D.2.1. Labor market structure

We assume that there is a continuum of differentiated labor inputs indexed by
j ∈ [0, 1].

Labor packer. There is a labor packer that bundles differentiated labor inputs
into aggregate labor demand according to a CES technology:

max
ht(j)

wthd,t −
∫ 1

0
wt(j)ht(j)dj s.t. hd,t =

(∫ 1

0
ht(j)

εw−1
εw dj

) εw
εw−1

The labor demand is

ht(j) =
(

wt(j)
wt

)−εw

hd,t.

and the aggregate wage wt is

wt =

(∫ 1

0
wt(j)1−εw dj

) 1
1−εw

.

Unions. As in Schmitt-Grohé and Uribe (2005), each household supplies each
possible type of labor. Wage-setting decisions are made by labor-type specific
unions j ∈ [0, 1].11 Given the wage wt(j) fixed by union j, households stand
ready to supply as many hours to the labor market j, ht(j), as demanded by firms

ht(j) =
(

wt(j)
wt

)−εw

hd,t,

where εw > 1 is the elasticity of substitution between labor inputs. Here, wt is
an index of the real wages prevailing in the economy at time t and hd,t is the
aggregate labor demand.

Households are distributed uniformly across unions and hence aggregate de-
mand for labor type j is spread uniformly across households. It follows that the

11This is different from the standard way of introducing sticky wages (see Christopher J. Erceg,
Dale W Henderson and Andrew T. Levin, 2000), which assumes that each household supplies a
differentiated type of labor input. This assumption introduces equilibrium heterogeneity across
households in the number of hours worked. To avoid this heterogeneity from spilling over into
consumption heterogeneity, it is typically assumed that preferences are separable in consumption
and labor and that financial markets exists that allow agents to fully insure against unemployment
risk. With the Schmitt-Grohé and Uribe formulation, one does not have to make these restrictive
assumptions.
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individual quantity of hours worked, ht(i), is common across households and
we denote it as ht. This must satisfy the time resource constraint ht =

∫ 1
0 ht(j)dj.

Plugging in for the labor demand from above, we get

ht = hd,t

∫ 1

0

(
wt(j)

wt

)−εw

dj.

The labor market structure rules out differences in labor income between house-
holds without the need to resort to contingent markets for hours. The common
labor income is given by

wthd,t =
∫ 1

0
wt(j)ht(j)dj = hd,t

∫ 1

0
wt(j)

(
wt(j)

wt

)−εw

dj.

Wage setting. Unions set their charged wages wj by maximizing a social welfare
function, given by the weighted average of hand-to-mouth and savers’ utility,
with the weights are equal to the shares of the households.12 The union problem
reads

max
wt(j)

(
λ
(xH,t)

1−σ − 1
1− σ

+ (1− λ)
(xS,t)

1−σ − 1
1− σ

)
− ϕ

h1+θ
t

1 + θ

s.t. ht = hd,t

∫ 1

0

(
wt(j)

wt

)−εw

dj.

pS,txS,t + iS,t + bS,t+1 = hd,t

∫ 1

0
wt(j)

(
wt(j)

wt

)−εw

dj +
Rb

t−1

Πt
bS,t + (1− τk)rtkS,t +

(1− τd)dt

1− λ
+ ωS,t

pH,txH,t = hd,t

∫ 1

0
wt(j)

(
wt(j)

wt

)−εw

dj + ωH,t

The FOC is given by

λx−σ
H,t

1
pH,t

hd,tw
εw
t (1− εw)wt(j)−εw + (1− λ)x−σ

S,t
1

pS,t
hd,tw

εw
t (1− εw)wt(j)−εw =

ϕhθ
t hd,tw

εw
t (−εw)wt(j)−εw−1

This rewrites

wt(j) =
εw

εw − 1
ϕhθ

t

(
λ

1
pH,t

x−σ
H,t + (1− λ)

1
pS,t

x−σ
S,t

)−1

,

12This welfare function follows from the assumption that each household i supplies each pos-
sible type of labor input j and there are a share of λ hand-to-mouth and a share of 1− λ savers.
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where εw
εw−1 =Mw is the constant wage markup. By putting an optimal subsidy

in place, we can neutralize the markup and arrive at

wt(j) = ϕhθ
t

(
λ

1
pH,t

x−σ
H,t + (1− λ)

1
pS,t

x−σ
S,t

)−1

.

Note that because everything on the right-hand-side is independent of j, it
follows that all unions charge the same wage wt(j) = wt. From the definition of
aggregate labor supply, we further have hd,t = ht.

Thus, wage setting is characterized by the following equation:

wt = ϕhθ
t

(
λ

1
pH,t

x−σ
H,t + (1− λ)

1
pS,t

x−σ
S,t

)−1

.

Using this in the households’ budget constraints:

pS,txS,t + iS,t + bS,t+1 = wtht +
Rb

t−1
Πt

bS,t + (1− τk)rtkS,t +
(1− τd)dt

1− λ
+ ωS,t

pH,txH,t = wtht + ωH,t.

D.2.2. Households

Savers. Savers maximize their lifetime utility subject to their budget constraint,
taking prices and wages as given, choosing how much to consume xS,t, to in-
vest in capital iS,t, and how much to save in risk-free bonds bS,t+1 (in real terms,
BS,t+1/Pt). Their program reads

max
xS,t,iS,t,bS,t+1

Et

[
∞

∑
s=0

βs

(
x1−σ

S,t+s − 1

1− σ
− ψ

h1+θ
t+s

1 + θ

)]

s.t. pS,txS,t + iS,t + bS,t+1 = wthd,t +
Rb

t−1
Πt

bS,t + (1− τk)rtkS,t +
(1− τd)dt

1− λ
+ ωS,t

kS,t+1 = iS,t + (1− δ)kS,t,

where we have expressed everything in real terms: pS,t is the price of the savers’

final consumption bundle, wt is the real wage, wthd,t is real labor income,
Rb

t−1
Πt

is
the risk-free rate deflated by inflation, rt is the rental rate of capital, dt are div-
idends, and ωS,t are lump-sum transfers from the government. σ is the relative
risk aversion (1/σ is the intertemporal elasticity of substitution) and ψ is a pa-
rameter governing the disutility of labor.
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The first-order conditions read

pS,tλt = x−σ
S,t

λt = βEt[(1 + (1− τk)rt+1 − δ)λt+1]

λt = βEt

[
Rb

t
Πt+1

λt+1

]

The final consumption bundle xS,t is a CES aggregate of consumption and
energy goods

xS,t =

(
a

1
εx
S,cc

εx−1
εx

S,t + a
1

εx
S,ee

εx−1
εx

S,t

) εx
εx−1

,

where aS,c and aS,e are distribution parameters with aS,c + aS,e = 113 , and εx is the
elasticity of substitution between non-energy and energy goods: ∂(ct/ec,t)/(ct/ec,t)

∂(pe,t/1)/(pe,t/1) .14

Making the distribution parameters household-specific allows for heterogeneity
in the households’ energy share.

The demands for the consumption and energy good the are given by

cS,t = aS,c

(
1

pS,t

)−εx

xS,t

eS,t = aS,e

(
pe,t

pS,t

)−εx

xS,t,

respectively. Note that the consumption good is chosen to be the numeraire, i.e.
it’s price is one in real terms.

13Note that the distribution parameters aS,c and aS,e, sometimes also referred to as shares, are
in fact not shares but depend on underlying dimensions unless εx = 1. In other words, these
parameters are not deep parameters but depend on a mixture of parameters that depends on the
choice of units. To circumvent this issue, we follow the re-parameterization approach proposed
by Cantore and Levine (2012). In particular, we calibrate the steady-state energy share and to back
out the implied distribution parameters. We have:

aS,e =
peeS
pSxS

(
pe

pS

)εx−1
= ωS,e

(
pe

pS

)εx−1
,

where ωS,e is the energy expenditure share. From this, we then have aS,c = 1− aS,e. Note that this
share is dimensionless. Thus, we can calibrate or estimate it. By using this strategy, we can also
perform comparative statics, varying the elasticity εx.

14If εx approaches ∞, the goods are perfect substitutes; if εx approaches 0, the goods are perfect
complements; and if εx approaches 1, the goods are one-for-one substitutable, which corresponds
to the Cobb-Douglas case.
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The corresponding price index is

pS,t =
(

aS,c + aS,e p1−εx
e,t

) 1
1−εx .

Hand-to-mouth. Hand-to-mouth households have no assets and thus consume
their labor income as well as the transfer they get from the government. Their
problem is thus static and reads

max
xH,t

x1−σ
H,t − 1
1− σ

− ψ
h1+θ

t
1 + θ

s.t. pH,txH,t ≤ wthd,t + ωH,t

Because of monotonicity, hand-to-mouth households will consume as much
as their budget constraint allows

pH,txH,t = wthd
t + ωH,t.

Similarly, consumption and energy demands are

cH,t = aH,c

(
1

pS,t

)−εx

xH,t

eH,t = aH,e

(
pe,t

pS,t

)−εx

xH,t

and the price of their bundle is

pH,t =
(

aH,c + aH,e p1−εx
e,t

) 1
1−εx .15

D.2.3. Firms

The firm block of the model consists of two sectors: energy and non-energy pro-
ducers. Importantly, non-energy firms also use energy as an intermediate input
to produce the non-energy good. Further, we assume that non-energy firms face
some costs in adjusting their prices while the energy sector does not face any
price rigidity.

15Finally, their distribution parameters are given by aH,e = ωH,e

(
pe
pH

)εx−1
and vaH,c = 1− aH,e.
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Non-energy firms. To simplify matters, we split the non-energy goods sectors
into two subsectors: a representative competitive final goods firm which aggre-
gates intermediate goods according to a CES technology and a continuum of in-
termediate goods producers that produce different varieties using labor as an
input. To the extent to which the intermediate goods are imperfect substitutes,
there is a downward-sloping demand for each intermediate variety, giving the in-
termediate producers some pricing power. However, importantly, intermediate
goods producers cannot freely adjust prices. Nominal price rigidities are mod-
eled according to Calvo (1983) mechanism. In each period, a firm faces a constant
probability 1− θp of being able to reoptimize the nominal wage.

Final goods producer. Final goods firms maximize profits subject to the produc-
tion function by taking prices as given. Since final goods firms are all identical,
we can focus on one representative firm. These firms bundle the differentiated
goods into a final good using a CES technology. The program of such a represen-
tative final goods firm (set up in nominal terms) reads

max
yt(i)

Ptyd,t −
∫ 1

0
Pt(i)yt(i)di s.t. yd,t =

(∫ 1

0
yt(i)

ε−1
ε di

) ε
ε−1

,

where yd,t is aggregate demand and ε is the elasticity of substitution. When goods
are perfectly substitutable ε → ∞, we approach the perfect competition bench-
mark.

From the first order condition, we get the factor demand

yt(i) =
(

Pt(i)
Pt

)−ε

yd,t.

From the zero profit condition one can deduce the aggregate price level Pt =
(∫ 1

0 Pt(i)1−εdj
) 1

1−ε .

Intermediate goods producers. We asume that non-energy intermediate goods
producers have the following production technology

yt(i) = e−γst atkt(i)αey,t(i)νhy,t(i)1−α−ν,

where at is TFP, and st is the atmospheric carbon concentration.
As intermediate goods producers are monopolists, they maximize profits by

taking the demand function of final goods firms into account. We consider now
the problem of an intermediate goods firm i. For the sake of simplicity the pro-
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gram is split into two sub-problems: the cost minimization and the price setting
problem. To find the real cost function, factor costs are minimized subject to the
production function. The program of firm i reads

min
nt(i)

rtkt(i) + wthy,t(i) + pe,tey,t(i) s.t. yt(i) ≤ e−γst atkt(i)αey,t(i)νhy,t(i)1−α−ν

The FOCs read

rt = αλt(i)
yt(i)
kt(i)

pe,t = νλt(i)
yt(i)
ey,t(i)

wt = (1− α− ν)λt(i)
yt(i)

hy,t(i)

where λt(i) is the corresponding Lagrange multiplier. This multiplier will again
have the interpretation as real marginal cost – how much will costs change if you
are forced to produce an extra unit of output, i.e. mct(i) = λt(i). To prove this,
let us solve for the Lagrange multiplier as a function of output. We have

λt(i) =
1
α

rt
kt(i)
yt(i)

=
1
ν

pe,t
ey,t(i)
yt(i)

=
1

1− α− ν
wt

hy,t(i)
yt(i)

.

Thus,

kt(i) =
α

1− α− ν

wt

rt
hy,t(i)

ey,t(i) =
ν

1− α− ν

wt

pe,t
hy,t(i)

Plugging this in the constraint

yt(i) = e−γst at

(
α

1− α− ν

wt

rt

)α ( ν

1− α− ν

wt

pe,t

)ν

hy,t(i).

From this we get the factor demand for labor, capital and energy

hy,t(i) = eγst

(
α

1− α− ν

wt

rt

)−α ( ν

1− α− ν

wt

pe,t

)−ν yt(i)
at

kt(i) = eγst

(
α

1− α− ν

wt

rt

)1−α ( ν

1− α− ν

wt

pe,t

)−ν yt(i)
at

ey,t(i) = eγst

(
α

1− α− ν

wt

rt

)−α ( ν

1− α− ν

wt

pe,t

)1−ν yt(i)
at

,
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which in turn can be used to get the Lagrange multiplier

λt(i) = eγst α−αν−ν(1− α− ν)−(1−α−ν)rα
t pν

e,tw
1−α−ν
t

1
at

.

Using the factor demands, we can solve for the cost function:

C(rt, pe,t, wt, yt(i)) = eγst α−αν−ν(1− α− ν)−(1−α−ν)rα
t pν

e,tw
1−α−ν
t

yt(i)
at

Thus, one can see that the multiplier is equal to the marginal cost function:
λt(i) = Cy(rt, pe,t, wt, yt(i)) = mct(i). Note that in the definition of the marginal
cost (Lagrange multiplier) above, there is nothing that depends on i. Thus, it
follows that marginal costs are the same across firms, i.e mct(i) = mct.

Another important result can be obtained by dividing the two factor demands:

kt(i)
hy,t(i)

=
α

1− α− ν

wt

rt

kt(i)
ey,t(i)

=
α

ν

pe,t

rt

From this one can see that all firms hire capital and energy in the same ratio, i.e.
kt(i)

hy,t(i)
= kt

hy,t
and ey,t(i)

hy,t(i)
=

ey,t
hy,t

. This also implies that the output-capital, output-
labor, and output-energy ratios are the same across firms.

Now that we have found the real cost function, we can move to the intermedi-
ate goods firms’ price setting problem. Intermediate goods producers set prices
to maximize the expected discounted stream of (real) profits (that is real revenue
minus real labor input). However, as outlined above, firms are not able to freely
adjust price each period. In particular, each period there is a fixed probability of
1− θp that a firm can adjust its price. This means that the probability a firm will
be stuck with a price one period is θp, for two periods is θ2

p, and so on (thus we
assume independence from time since last price adjustment). Consider the pric-
ing problem of a firm given the opportunity to adjust its price in a given period.
Since there is a chance that the firm will get stuck with its price for multiple peri-
ods, the pricing problem becomes dynamic. Firms will discount profits s periods

into the future by Mt,t+sθ
s
p, where Mt,t+s = βs λS

t+s
λS

t
is the stochastic discount factor,

which follows from the fact that the firm is owned by the savers. The price setting
problem reads

max
Pt(i)

Et

∞

∑
k=0

(βθp)
k λt+k

λt

(
Pt(i)
Pt+k

yt+k(i)−mct+kyt+k(i)
)
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s.t.

{
yt+k(i) =

(
Pt(i)
Pt+k

)−εp

yd,t+k

}∞

k=0

.

The FOC reads

Et

∞

∑
k=0

(βθp)
k λt+k

λt

(
(1− εp)Pt(i)−εp Pεp−1

t+k yd,t+k + εp mct+kPt(i)−εp−1Pεp
t+kyd,t+k

)
= 0.

Simplifying gives

Et

∞

∑
k=0

(βθp)
kλt+k

(
(1− εp)Pεp−1

t+k yd,t+k + εp mct+kPt(i)−1Pεp
t+kyd,t+k

)
= 0.

By rearranging, we obtain

Pt(i) =
εp

εp − 1
Et ∑∞

k=0(βθp)kλt+kmct+kPεp
t+kyd,t+k

Et ∑∞
k=0(βθp)kλt+kPεp−1

t+k yd,t+k

Note that nothing on the RHS depends on i. Thus, all firms will choose the same
reset price P∗t = Pt(i).

We can write the optimal price more compactly as

P∗t =
εp

εp − 1
X1,t

X2,t

with

X1,t = Et

∞

∑
k=0

(βθp)
kλt+kmct+kPεp

t+kyd,t+k

X2,t = Et

∞

∑
k=0

(βθp)
kλt+kPεp−1

t+k yd,t+k.

16If θp = 0, then this would reduce to

P∗t =
εp

εp − 1
︸ ︷︷ ︸
M

Pt mct,

i.e. the optimal price would be a fixed markup over nominal marginal cost. The distortion coming
from this fixed markup over marginal cost can be easily eliminated using a constant subsidy. In
this case we have thatM = 1 and

Pt = MCt

in the limiting case when prices are flexible. However, with sticky prices this markup will be time
varying, which introduces another distortion. In steady state, however, there will be no markup,
i.e. real marginal costs will be one.
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We can also write the X’s recursively

X1,t = λtmctP
εp
t yd,t + βθpEtX1,t+1

X2,t = λtP
εp−1
t yd,t + βθpEtX2,t+1.16

Let us now rewrite these expressions in terms of inflation (as the price level
may be non-stationary). Define x1,t =

X1,t

P
εp
t

and x2,t =
X2,t

P
εp−1
t

. Thus, we have

x1,t = λtmctyd,t + βθpEtx1,t+1Π
εp
t+1

x2,t = λtyd,t + βθpEtx2,t+1Π
εp−1
t+1 .

The reset price equation then writes

P∗t =
εp

εp − 1
Pt

x1,t

x2,t

⇒ Π∗t =
εp

εp − 1
Πt

x1,t

x2,t
,

where we define reset price inflation as Π∗t =
P∗t

Pt−1
.

Exploiting the Calvo assumption, we can write the aggregate price index as

Π
1−εp
t = (1− θp)(Π∗t )

1−εp + θp.

By way of summary, optimal behavior of firm i is characterized by

rt = αmct
yt

kt

pe,t = νmct
yt

ey,t

wt = (1− α− ν)mct
yt

hy,t

Π∗t =
εp

εp − 1
Πt

x1,t

x2,t

x1,t = λtmctyd,t + βθpEtx1,t+1Π
εp
t+1

x2,t = λtyd,t + βθpEtx2,t+1Π
εp−1
t+1

Π
1−εp
t = (1− θp)(Π∗t )

1−εp + θp

yt(i) = e−γst atkt(i)αey,t(i)νhy,t(i)1−α−ν
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The aggregate production is given by

yt =
∫ 1

0
yt(i)di =

∫ 1

0
e−γst atkt(i)αey,t(i)νhy,t(i)1−α−νdi

⇒ yt = e−γst atkα
t eν

y,th
1−α−ν
y,t = ∆tyd,t,

where we have exploited the fact that factors are hired in the same proportion
and plugged in for the demand function. Note that there is a wedge between
aggregate output and aggregate demand. The intuition is that with Calvo pric-
ing, firms charging prices in different periods will generally have different prices,
which implies that the model features price dispersion. When firms have differ-
ent relative prices, there are distortions that create a wedge between between
aggregate output measured in terms of production factor inputs and aggregate
demand measured in terms of the composite good. The higher the price disper-
sion, the more labor and capital are needed to produce a given level of output.

We can also rewrite the dispersion term in terms of inflation making use of the
Calvo assumption. We have

∆t = (1− θp)(Π∗t )
−εp Π

εp
t + θpΠ

εp
t ∆t−1.

Firms profits are

dt =
∫ 1

0

Pt(i)
Pt

yt(i)di−mct

∫ 1

0
yt(i)di.

Plugging in the demand function gives

dt = yd,tP
εp−1
t

∫ 1

0
Pt(i)1−εp di−mctyd,t

∫ 1

0

(
Pt(i)

Pt

)−εp

di.

Now since P1−εp
t =

∫ 1
0 Pt(i)1−εp di, this reduces to

dt = yd,t −mctyd,t

∫ 1

0

(
Pt(i)

Pt

)−εp

di

Thus, we can write profits as

dt = (1−mct∆t)yd,t.

Further, note that

mctyt = rtkt + pe,tey,t + wthy,t.
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Thus, we can also write profits as

dt = yd,t − rtkt − pe,tey,t − wthy,t.

Energy producers. The energy firm produces energy using labor only according
to the following production function:

et = ae,the,t.

We assume that there is only a single source of energy (e.g. coal) that is available
in (approx.) infinite supply. Note that we measure energy in terms of carbon
content (carbon amount emitted). Energy firms are subject to a carbon tax. For
each unit of emitted CO2, they have to pay τt.

Their maximization problem reads

max
he,t

(1− τt)pe,tet − wthe,t

s.t. et = ae,the,t

The FOC gives the optimal energy supply:

(1− τt)pe,tae,t = wt

(1− τt)pe,tet = wthe,t
wt

(1− τt)pe,t
=

et

he,t
.

D.2.4. Market clearing

To derive goods market clearing, we multiply the households budget constraints
by their shares and sum over them:

λpH,txH,t + (1− λ)(pS,txS,t + iS,t + bS,t+1) = λ(wtht + ωH,t) + (1− λ)

(
wtht +

Rb
t−1

Πt
bS,t + (1− τk)rtkS,t +

(1− τd)dt

1− λ
+ ωS,t

)

ct + it + pe,tec,t = wtht + rtkt + τt pe,tet + dt

ct + it + pe,tec,t = wtht + rtkt + τt pe,tet + yd,t − rtkt − wthy,t − pe,tey,t

ct + it = wthy,t + wthe,t + τt pe,tet + yd,t − wthy,t − pe,tet

ct + it = (1− τt)pe,tet + τt pe,tet + yd,t − pe,tet

ct + it = yd,t
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D.2.5. Equilibrium

A general equilibrium of this economy is defined as a sequence of quantities
Q = {xt, xS,t, xH,t, ct, cS,t, cH,t, ec,t, eS,t, eH,t, it, kt+1, yt, yd,t, ht, hy,t, he,t, ey,t, mct, et, st, τt,
ωH,t, dt, ∆t, x1,t, x2,t}∞

t=0, a sequence of pricesP = {λt, wt, rt, pe,t, pS,t, pH,t, Rb
t , Πt, Π∗t }∞

t=0,
and a sequence of forcing variables F = {at, ae,t, ετ,t, εmp,t}∞

t=0 such that

1. Given a sequence of prices P , and a forcing sequence F , the sequence of
quantities Q solves the households’ and the firms’ problems.

2. Given a sequence of quantitiesQ and a sequence of forcing variables F , the
sequence of prices P clears all markets.

The equilibrium is characterized by the following set of equations:
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Table D.2: Summary of equilibrium conditions

1: Wage setting wt = ϕhθ
t

(
λ 1

pH,t
x−σ

H,t + (1− λ) 1
pS,t

x−σ
S,t

)−1

2: Non-energy demand, S cS,t = aS,c

(
1

pS,t

)−εx
xS,t

3: Energy demand, S eS,t = aS,e

(
pe,t
pS,t

)−εx
xS,t

4: Shadow value of wealth pS,tλt = x−σ
S,t

5: Investment Euler equation, S λt = βEt[(1 + (1− τk)rt+1 − δ)λt+1]

6: Bonds Euler equation, S λt = βEt

[
Rb

t
Πt+1

λt+1

]

7: Capital accumulation kt+1 = it + (1− δ)kt

8: Final good price index, S pS,t =
(

aS,c + aS,e p1−εx
e,t

) 1
1−εx

9: Non-energy demand, H cH,t = aH,c

(
1

pH,t

)−εx
xH,t

10: Energy demand, H eH,t = aH,e

(
pe,t
pH,t

)−εx
xH,t

11: Consumption, H pH,txH,t = wtht + ωH,t

12: Final good price index, H pH,t =
(

aH,c + aH,e p1−εx
e,t

) 1
1−εx

13: Capital demand non-energy firm rt = αmct
yt
kt

14: Labor demand non-energy firm wt = (1− α− ν)mct
yt

hy,t

15: Energy demand non-energy firm pe,t = νmct
yt
ey,t

16: Reset price Π∗t =
εp

εp−1 Πt
x1,t
x2,t

17-18: Auxiliary terms x1,t = λtmctyd,t + βθpEtx1,t+1Π
εp
t+1

x2,t = λtyd,t + βθpEtx2,t+1Π
εp−1
t+1

19: Aggregate inflation Π
1−εp
t = (1− θp)(Π∗t )

1−εp + θp

20: Price dispersion ∆t = (1− θp)(Π∗t )
−εp Π

εp
t + θpΠ

εp
t ∆t−1

21: Aggregate demand non-energy yd,t∆t = yt
22: Production function non-energy firm yt = e−γst atkα

t eν
y,th

1−α−ν
y,t

23: Energy supply (1− τt)pe,tet = wthe,t
24: Production function energy firm et = ae,the,t
25: Carbon emissions st = (1− ϕ)st−1 + ϕ0et
26: Aggregate total consumption xt = λxH,t + (1− λ)xS,t
27: Aggregate non-energy consumption ct = λcH,t + (1− λ)cS,t
28. Aggregate energy consumption ec,t = λeH,t + (1− λ)eS,t
29: Labor market clearing ht = hy,t + he,t
30: Energy market clearing et = ec,t + ey,t
31: Goods market clearing ct + it = yd,t
32: Tax schedule τt = (1− ρτ)τ + ρττt−1 + ετ,t
33: Transfers, H λωH,t = τddt + τkrK

t kt + µτt pe,tet
34: Dividends dt = (1−mct∆t)yd,t

35: Taylor rule Rb
t

Rb =
(

Πt
Π

)φπ

eεmp,t
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D.2.6. Steady state and model solution

We assume that a = ae = 1 in steady state. Furthermore, we normalize ψ such
that h = 1. Furthermore, τ is calibrated. Finally, we assume that there is zero
inflation in steady state, i.e. Π = 1. From the definition of aggregate inflation and
the price dispersion, this implies Π∗ = 1, ∆ = 1 and yd = y.

From the investment Euler equation, we have

r =
1
β − 1 + δ

1− τk .

From the bonds Euler, we get

Rb =
1
β

.

From the reset price, we get

mc =
εp − 1

εp
.

To solve for the steady state, we guess k and e. From (13) with the above
equation we get y.17 From (24), we get he. From (29), we get hy. From (25), we get
s. From (22), we get ey. From (28), we get ec. From (15), we get pe. From (14), we
get w. From (7), we get i. From (31), we get c. From (8), we get pS:

pS =
(

aS,c + aS,e p1−εx
e

) 1
1−εx

=
(

1−ωS,e pεx−1
e p1−εx

S + ωS,e p1−εx
S

) 1
1−εx

= pS

(
pεx−1

S −ωS,e pεx−1
e + ωS,e

) 1
1−εx

⇒ 1 = pεx−1
S −ωS,e pεx−1

e + ωS,e

pS =
(

1 + ωS,e pεx−1
e −ωS,e

) 1
εx−1

.

From this we then have aS,e = ωS,e

(
pe
pS

)εx−1
and aS,c = 1− aS,e. Similarly we

get from (12) pH and aH,e and aH,c. From (34), we get d. From (33), we get ωH.
From (11), we get xH. From (9), we get cH. From (10), we get eH. From (27), we
get cS. From (28), we get eS. From (3), we get xS. From (26), we get x. From (4),

17The equation numbers here refer to the equations in Table D.2.
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we get λ. From (1), we get ψ. From (17)-(18), we get the values of the auxiliary
terms x1 and x2.
Then we minimize such that (2) and (23) hold.

To solve the model, we log-linearize the equilibrium equations around the
deterministic steady state and solve for a set of linearized policy functions using
Dynare.
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